RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCISCIESCOPUS

        On the effective Lewis number formulations for lean hydrogen/hydrocarbon/air mixtures

        Bouvet, N.,Halter, F.,Chauveau, C.,Yoon, Y. Pergamon Press ; Elsevier Science Ltd 2013 International journal of hydrogen energy Vol.38 No.14

        Decades of research have underlined the undeniable importance of the Lewis number (Le) in the premixed combustion field. From early experimental observations on laminar flame propagation to the most recent DNS studies of turbulent flames, the unbalanced influence of thermal to mass diffusion (i.e. Le ≠ 1), known as nonequidiffusion, has shed the light on a wide range of combustion phenomena, especially those involving stretched flames. As a result the determination of the Lewis number has become a routine task for the combustion community. Recently, the growing interest in hydrogen/hydrocarbon (HC) fuel blends has produced extensive studies that have not only improved our understanding of H<SUB>2</SUB>/HC flame dynamics, but also, in its wake, raised a fundamental question: which effective Lewis number formulation should we use to characterize the combustion of hydrogen/hydrocarbon/air blends? While the Lewis number is unambiguously defined for combustible mixtures with a single fuel reactant, the literature is unclear regarding the appropriate equivalent formulation for bi-component fuels. The present paper intends to clarify this aspect. To do so, effective Lewis number formulations for lean (φ = 0.6 and 0.8) premixed hydrogen/hydrocarbon/air mixtures have been investigated in the framework of an existing outwardly propagating flame theory. Laminar burning velocities and burned Markstein lengths of H<SUB>2</SUB>/CH<SUB>4</SUB>, H<SUB>2</SUB>/C<SUB>3</SUB>H<SUB>8</SUB>, H<SUB>2</SUB>/C<SUB>8</SUB>H<SUB>18</SUB> and H<SUB>2</SUB>/CO fuel blends in air were experimentally and numerically determined for a wide range of fuel compositions (0/100% → 100/0% H<SUB>2</SUB>/HC). By confronting the two sets of results, the most appropriate effective Lewis number formulation was identified for conventional H<SUB>2</SUB>/HC/air blends. Observed deviations from the validated formulation are discussed for the syngas (H<SUB>2</SUB>/CO) flame cases.

      • Maintaining Cognitively Challenging Discourse Through Student Silence

        ( Jessica Jensen ),( Marina Halter ),( Anna Kye ) 한국수학교육학회 2020 수학교육연구 Vol.23 No.2

        Student engagement in high-level, cognitively demanding instruction is pivotal for student learning. However, many teachers are unable to maintain such instruction, especially in instances of non-responsive students. This case study of three middle school teachers explores prompts that aim to move classroom discussions past student silence. Prompt sequences were categorized into Progressing, Focusing, and Redirecting Actions, and then analyzed for maintenance of high levels of cognitive demand. Results indicate that specific prompt types are prone to either raise or diminish the cognitive demand of a discussion. While Focusing Actions afforded students opportunities to process information on a more meaningful level, Progressing Actions typically lowered cognitive demand in an effort to get through mathematics content or a specific method or procedure. Prompts that raise cognitive demand typically start out as procedural or concrete and progress to include students’ thoughts or ideas about mathematical concepts. This study aims to discuss five specific implications on how teachers can use prompting techniques to effectively maintain cognitively challenging discourse through moments of student silence.

      • SCIESCOPUS

        Peroxisome proliferator-activated receptor gamma agonist pioglitazone prevents the hyperglycemia caused by phosphatidylinositol 3-kinase pathway inhibition by PX-866 without affecting antitumor activity.

        Ihle, Nathan T,Lemos, Robert,Schwartz, David,Oh, Junghwan,Halter, Robert J,Wipf, Peter,Kirkpatrick, Lynn,Powis, Garth American Association for Cancer Research, Inc 2009 Molecular Cancer Therapeutics Vol.8 No.1

        <P>The phosphatidylinositol 3-kinase (PI3K)/Akt signaling cascade is an important component of the insulin signaling in normal tissues leading to glucose uptake and homeostasis and for cell survival signaling in cancer cells. Hyperglycemia is an on-target side effect of many inhibitors of PI3K/Akt signaling including the specific PI3K inhibitor PX-866. The peroxisome proliferator-activated receptor gamma agonist pioglitazone, used to treat type 2 diabetes, prevents a decrease in glucose tolerance caused by acute administration of PX-866. Our studies have shown that pioglitazone does not inhibit the antitumor activity of PX-866 in A-549 non-small cell lung cancer and HT-29 colon cancer xenografts. In vitro studies also showed that pioglitazone increases 2-[1-(14)C]deoxy-D-glucose uptake in L-6 muscle cells and prevents inhibition of 2-deoxyglucose uptake by PX-866. Neither pioglitazone nor PX-866 had an effect on 2-deoxyglucose uptake in A-549 lung cancer cells. In vivo imaging studies using [18F]2-deoxyglucose (FDG) positron emission tomography showed that pioglitazone increases FDG accumulation by normal tissue but does not significantly alter FDG uptake by A-549 xenografts. Thus, peroxisome proliferator-activated receptor gamma agonists may be useful in overcoming the increase in blood glucose caused by inhibitors of PI3K signaling by preventing the inhibition of normal tissue insulin-mediated glucose uptake without affecting antitumor activity.</P>

      • SCISCIESCOPUS

        Quantifying and Localizing the Mitochondrial Proteome Across Five Tissues in A Mouse Population

        Williams, Evan G.,Wu, Yibo,Wolski, Witold,Kim, Jun Yong,Lan, Jiayi,Hasan, Moaraj,Halter, Christian,Jha, Pooja,Ryu, Dongryeol,Auwerx, Johan,Aebersold, Ruedi American Society for Biochemistry and Molecular Bi 2018 Molecular and Cellular Proteomics Vol.17 No.9

        <P>We have used SWATH mass spectrometry to quantify 3648 proteins across 76 proteomes collected from genetically diverse BXD mouse strains in two fractions (mitochondria and total cell) from five tissues: liver, quadriceps, heart, brain, and brown adipose (BAT). Across tissues, expression covariation between genes' proteins and transcripts-measured in the same individuals-broadly aligned. Covariation was however far stronger in certain subsets than others: only 8% of transcripts in the lowest expression and variance quintile covaried with their protein, in contrast to 65% of transcripts in the highest quintiles. Key functional differences among the 3648 genes were also observed across tissues, with electron transport chain (ETC) genes particularly investigated. ETC complex proteins covary and form strong gene networks according to tissue, but their equivalent transcripts do not. Certain physiological consequences, such as the depletion of ATP synthase in BAT, are thus obscured in transcript data. Lastly, we compared the quantitative proteomic measurements between the total cell and mitochondrial fractions for the five tissues. The resulting enrichment score highlighted several hundred proteins which were strongly enriched in mitochondria, which included several dozen proteins were not reported in literature to be mitochondrially localized. Four of these candidates were selected for biochemical validation, where we found MTAP, SOAT2, and IMPDH2 to be localized inside the mitochondria, whereas ABCC6 was in the mitochondria-associated membrane. These findings demonstrate the synergies of a multi-omics approach to study complex metabolic processes, and this provides a resource for further discovery and analysis of proteoforms, modified proteins, and protein localization.</P>

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼