RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 음성지원유무
        • 원문제공처
          펼치기
        • 등재정보
          펼치기
        • 학술지명
          펼치기
        • 주제분류
          펼치기
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재후보

        안와 격막내 자가지방이식술과 절개식 중검술을 이용한 함몰된 상안검의 교정

        윤동주,강철욱,배용찬 대한미용성형외과학회 2008 Archives of Aesthetic Plastic Surgery Vol.14 No.2

        Sunken upper eyelids are one of the common and complicated problems that occur with an aging process or after double eyelidplasty. Autologous microfat grafting is a technique that has frequently been used for sunken eyelids. The traditional blind method of microfat grafting has a some complications. Therefore, we performed the open method with incisional double eyelidplasty. Between June, 2005 and February, 2008, we performed incisional double eyelidplasty and autologous microfat grafting into orbital septum in 63 patients(124 cases) with sunken upper eyelids. The fat was harvested from periumbilical regionand centrifuged at 3000rpm for 3 minutes. After the middle fat layer was obtained by 1cc syringe, we made skin incision and separated orbital septum(inner layer) and levator aponeurosis. And then, we injected the microfat into orbital septum with 0.9mm blunt cannula. At this time, one of the important things was to make the patient gaze upward during the fat injection. All the patients were satisfied, except 5 cases which were 3 cases of undercorrection and 2 cases of asymmetry. Surgical revision was required for only the above 5 cases(4%). Patients with some transient complications of ptosis (13 cases), overcorrection(4 cases) and nodular appearance(2 cases) were self-improved. We found that the method using incisional double eyelidplasty and autologous microfat grafting into orbital septum has many advantages which include less traumatic, less complication rate, less absorption rate of fat. and less burden of patients.

      • KCI등재

        포스트 텐션드 콘크리트 포장의 종방향 긴장 설계 방안

        윤동주,김성민,배종오 한국도로학회 2009 한국도로학회논문집 Vol.11 No.1

        This study was conducted to develop the design methodology of longitudinal post tensioning for the post-tensioned concrete pavement (PTCP). The longitudinal stress distribution in the PTCP slab was analyzed when post tensioning was applied. Then, the tensile stress distribution in the PTCP slab due to the environmental and vehicle loads needed for the design was investigated. In addition, prestress losses were calculated considering the losses due to the frictional resistance between the slab and underlying layer and due to various reasons related to tensioning. The tensile stresses used for the design were obtained by adding the stresses from the critical conditions under both the environmental and vehicle loads. The prestress losses were obtained by considering actual field conditions. The effective post tensioning amount was determined by considering the design loads including environmental and vehicle loads and various losses, and the effect of the allowable tensile stress on the post tensioning amount was investigated. The initial stage of the design of the longitudinal post tensioning is to obtain the stresses under the design loads and the required prestress determined by subtracting the allowable tensile stress from the design stress. Then, the optimal tendon spacing and the tensioning amount can be obtained by comparing with the effective tensioning amount including various stress losses. 본 연구는 포스트 텐션드 콘크리트 포장(PTCP: Post-Tensioned Concrete Pavement)의 종방향 긴장 설계 방안을 구축하기 위하여 수행되었다. 우선 종방향 긴장으로 인해 PTCP 슬래브에 발생하는 응력분포를 분석하였다. 그리고 설계에 필요한 환경하중과 차륜하중이 PTCP 슬래브에 작용할 때 슬래브에 발생하는 인장응력의 분포를 분석하였다. 또한 슬래브와 하부지반 사이의 마찰저항 및 긴장으로 인해 발생하는 여러 손실원인들을 고려하여 긴장손실량을 산정하였다. 설계에 사용 될 발생 인장응력은 각각의 하중에 의해 발생 가능한 최악의 조건에 의해 산정되며 여러 손실들은 현장조건을 최대한 반영하여 산정된다. 이러한 환경 및 차륜하중 등의 설계하중과 긴장 시 발생하는 각종 손실들을 감안한 유효긴장량을 산정하였으며 긴장응력 결정의 기준이 되는 콘크리트 슬래브의 허용인장응력의 영향에 대하여 분석하였다. 궁극적으로 종방향 긴장 설계방안은 설계하중에 대한 슬래브의 응력을 산출한 후 콘크리트 슬래브의 허용인장응력을 감하여 요구되는 긴장응력을 산출하고, 각종 손실이 고려된 유효긴장량과의 비교를 통해 합리적인 긴장간격 및 긴장량을 결정하는 것이다.

      • KCI등재

        고정성 보철물을 지지하는 골유착성 임플란트의 위치에 따른 지지조직에서의 유한요소적 응력분석

        윤동주,신상완,서규원,Yoon, Dong-Joo,Shin, Sang-Wan,Suh, Kyu-Won 대한치과보철학회 1993 대한치과보철학회지 Vol.31 No.1

        Many studies have been reported on the successful replacement of missing teeth with osseointegrated dental Implants. However, little research has been carried out on the bio-mechanical aspect of the stress on the surrounding bone of the free-standing type of dental implant prostheses. This experimental study was aimed to analyze the stress distribution pattern on the supporting tissues depending upon the position of osseointegrated implants supporting fixed bridges. In the cases of unilateral partially edentulous mandible (the 2nd premolar and the 1st and 2nd molars missing), two osseointegrated implants were placed at the 2nd premolar and 2nd molar sites (Model A) , the 1st and 2nd molar sites (Model B, Anterior cantilevered type), the 2nd premolar and 1st molar sites (Model C, Posterior cantilevered type). Chewing forces of dentate patients and denture wearer were applied vertically on the 2nd premolar, the 1st molar, and the 2nd molar of each model. A 3-Unit fixed partial denture was constructed at each model and cantilevered extension parts were involved in Model B and Model C. Two dimensional finite element analysis was undertaken. The commercial software (Super SAP) for IBM 16 bit personal computer was utilized. The results were as follows : 1. The magnitude of applied load influenced on the total value of stresses, but did not in-fluence on the pattern of stress distribution. 2. The magnitude of stress developed from the supporting tissues were in order of Model C,Model A,Model B. 3. High stresses were concentrated on the cervical and apical portion of the implant/bone interface. 4. A difference of the stress magnitude on the implant/bone interface between mesial and distal implant was most prominant in Model C and in order of Model A and Model B. 5. The stresses developed in Model A were evenly distributed throughout both implants. 6. The stresses concentrated on the cervical portion of cantilevered side were higher in the posterior cantilevered type than in the anterior cantilevered type.

      • KCI등재후보

        고정성 보철물을 지지하는 골유착성 임풀란트의 위치에 따른 지지조직에서의 유한요소적 응력분석

        尹東柱,申相完,徐室源 대한치과이식임플란트학회 1992 The Korean Academy of Implant Dentistry Vol.12 No.1

        Many studies have been reported on the successful replacement of missing teeth with osseointegrated dental implants. However, little research has been carried out on the biomechanical aspect of the stress on the surrounding bone of the free-standing type of dental implant prostheses. This experimental study was aimed to analyze the stress distribution pattern on the supporting tissues depending upon the position of osseointegrated implants supporting fixed bridges. In the cases of unilateral partially edentulous mandible (the 2nd premolar and the 1st and 2nd molars missing), two osseointegrated implants were placed at the 2nd premolar and 2nd molar sites (Model A ), the 1st and 2nd molar sites (Model B, Anterior cantilevered type), the 2nd premolar and 1st molar sites (Model C, Posterior cantilevered type). Chewing forces of dentate patients and denture wearer were applied vertically on the 2nd premolar, the 1st molar, and the 2nd molar of each model. A 3 —Unit fixed partial denture was constructed at each model and cantilevered extension parts were involved in Model B and Model C. Two dimensional finite element analysis was undertaken. The commercial software (Super SAP) for IBM 16 bit personal computer was utilized. The results were as follows : 1. The magnitude of applied load influenced on the total value of stresses, but did not influence on the pattern of stress distribution. 2. The magnitude of stress developed from the supporting tissues were in order of Model C,Model A,Model B. 3. High stresses were concentrated on the cervical and apical portion of the implant/bone interface. 4. A difference of the stress magnitude on the implant/bone interface between mesial and distal implant was most prominant in Model C and in order of Model A and Model B. 5. The stresses developed in Model A were evenly distributed throughout both implants. 6. The stresses concentrated on the cervical portion of cantilevered side were higher in the posterior cantilevered type than in the anterior cantilevered type.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼