RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
          펼치기
        • 등재정보
        • 학술지명
          펼치기
        • 주제분류
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Selecting Protected Area Using Species Richness

        Kwon, Hyuksoo,Kim, Jiyoen,Seo, Changwan 한국환경생태학회 2015 한국환경생태학회지 Vol.29 No.1

        We created species richness maps of mammals, birds and plants using "Nnational Ecosystem Survey" data and identified correlations between species richness maps of each taxa. We examine the distribution of species richness of each taxa and calculated conservation priority rank through plotting species-area curves using an additive benefit function in Zonation. The conclusions of this study are as follows. First, plant showed high species richness in Gangwon province and Baekdudaegan, and mammals showed high species richness at eastern slope of Baekdudaegan in Gangwon province unusually and the species richness of mammals distributed equally except Gyeonggi and Chungnam province. However, birds showed high species richness in the west costal because the area is the major route of winter migratory birds. Second, correlation of each taxa’s distribution is not significant. Correlation between mammals and birds is positive but correlations between birds and others are negative. Because mammals inhabit in forest but birds mostly live in coastal wetlands and rivers. Therefore, bird’s habitats are not shared with other habitats. Third, the probability of mammals occurrence is very low under 25% in species-area curve, others increase proportionally to area. Birds increase dramatically richness at 10% because bird's habitat is concentrated in coastal wetlands and rivers. Plants increased gently species richness due to large forest in Gangwon province. We can calculate the predicted number of species in curves and plan various conservation strategies using the marginal number of species. Finally, high priority ranks for conservation distributed mainly in Gangwon province and Baekdudaegan. When we compared with priority map and terrestrial national parks, the parks were evaluated as high priority ranks. However, the rank of parks away from Baekdudaegan was low. This study has the meaning of selecting conservation priority area using National Ecosystem Survey. In spite of the omission of survey data in national parks and Baekdudaegan, the results were good. Therefore, the priority rank method using species distribution models is useful to selecting protected areas and improving conservation plans. However, it is needed to select protected areas considering various evaluation factors, such as rarity, connectivity, representativeness, focal species and so on because there is a limit to select protected area only using species richness.

      • KCI등재

        Selecting Protected Area Using Species Richness

        ( Hyu Ksoo Kwon ),( Ji Yoen Kim ),( Chang Wan Seo ) 한국환경생태학회 2015 한국환경생태학회지 Vol.29 No.1

        We created species richness maps of mammals, birds and plants using "Nnational Ecosystem Survey" data and identified correlations between species richness maps of each taxa. We examine the distribution of species richness of each taxa and calculated conservation priority rank through plotting species-area curves using an additive benefit function in Zonation. The conclusions of this study are as follows. First, plant showed high species richness in Gangwon province and Baekdudaegan, and mammals showed high species richness at eastern slope of Baekdudaegan in Gangwon province unusually and the species richness of mammals distributed equally except Gyeonggi and Chungnam province. However, birds showed high species richness in the west costal because the area is the major route of winter migratory birds. Second, correlation of each taxa’s distribution is not significant. Correlation between mammals and birds is positive but correlations between birds and others are negative. Because mammals inhabit in forest but birds mostly live in coastal wetlands and rivers. Therefore, bird’s habitats are not shared with other habitats. Third, the probability of mammals occurrence is very low under 25% in species-area curve, others increase proportionally to area. Birds increase dramatically richness at 10% because bird``s habitat is concentrated in coastal wetlands and rivers. Plants increased gently species richness due to large forest in Gangwon province. We can calculate the predicted number of species in curves and plan various conservation strategies using the marginal number of species. Finally, high priority ranks for conservation distributed mainly in Gangwon province and Baekdudaegan. When we compared with priority map and terrestrial national parks, the parks were evaluated as high priority ranks. However, the rank of parks away from Baekdudaegan was low. This study has the meaning of selecting conservation priority area using National Ecosystem Survey. In spite of the omission of survey data in national parks and Baekdudaegan, the results were good. Therefore, the priority rank method using species distribution models is useful to selecting protected areas and improving conservation plans. However, it is needed to select protected areas considering various evaluation factors, such as rarity, connectivity, representativeness, focal species and so on because there is a limit to select protected area only using species richness.

      • KCI등재

        Selecting Protected Area Using Species Richness

        권혁수,김지연,서창완 한국환경생태학회 2015 한국환경생태학회지 Vol.29 No.1

        We created species richness maps of mammals, birds and plants using "Nnational Ecosystem Survey" data and identified correlations between species richness maps of each taxa. We examine the distribution of species richness of each taxa and calculated conservation priority rank through plotting species-area curves using an additive benefit function in Zonation. The conclusions of this study are as follows. First, plant showed high species richness in Gangwon province and Baekdudaegan, and mammals showed high species richness at eastern slope of Baekdudaegan in Gangwon province unusually and the species richness of mammals distributed equally except Gyeonggi and Chungnam province. However, birds showed high species richness in the west costal because the area is the major route of winter migratory birds. Second, correlation of each taxa’s distribution is not significant. Correlation between mammals and birds is positive but correlations between birds and others are negative. Because mammals inhabit in forest but birds mostly live in coastal wetlands and rivers. Therefore, bird’s habitats are not shared with other habitats. Third, the probability of mammals occurrence is very low under 25% in species-area curve, others increase proportionally to area. Birds increase dramatically richness at 10% because bird's habitat is concentrated in coastal wetlands and rivers. Plants increased gently species richness due to large forest in Gangwon province. We can calculate the predicted number of species in curves and plan various conservation strategies using the marginal number of species. Finally, high priority ranks for conservation distributed mainly in Gangwon province and Baekdudaegan. When we compared with priority map and terrestrial national parks, the parks were evaluated as high priority ranks. However, the rank of parks away from Baekdudaegan was low. This study has the meaning of selecting conservation priority area using National Ecosystem Survey. In spite of the omission of survey data in national parks and Baekdudaegan, the results were good. Therefore, the priority rank method using species distribution models is useful to selecting protected areas and improving conservation plans. However, it is needed to select protected areas considering various evaluation factors, such as rarity, connectivity, representativeness, focal species and so on because there is a limit to select protected area only using species richness.

      • KCI등재

        Selecting Protected Area Using Species Richness

        Kwon, Hyuksoo,Kim, Jiyoen,Seo, Changwan Korean Society of Environment and Ecology 2015 한국환경생태학회지 Vol.29 No.1

        We created species richness maps of mammals, birds and plants using "Nnational Ecosystem Survey" data and identified correlations between species richness maps of each taxa. We examine the distribution of species richness of each taxa and calculated conservation priority rank through plotting species-area curves using an additive benefit function in Zonation. The conclusions of this study are as follows. First, plant showed high species richness in Gangwon province and Baekdudaegan, and mammals showed high species richness at eastern slope of Baekdudaegan in Gangwon province unusually and the species richness of mammals distributed equally except Gyeonggi and Chungnam province. However, birds showed high species richness in the west costal because the area is the major route of winter migratory birds. Second, correlation of each taxa's distribution is not significant. Correlation between mammals and birds is positive but correlations between birds and others are negative. Because mammals inhabit in forest but birds mostly live in coastal wetlands and rivers. Therefore, bird's habitats are not shared with other habitats. Third, the probability of mammals occurrence is very low under 25% in species-area curve, others increase proportionally to area. Birds increase dramatically richness at 10% because bird's habitat is concentrated in coastal wetlands and rivers. Plants increased gently species richness due to large forest in Gangwon province. We can calculate the predicted number of species in curves and plan various conservation strategies using the marginal number of species. Finally, high priority ranks for conservation distributed mainly in Gangwon province and Baekdudaegan. When we compared with priority map and terrestrial national parks, the parks were evaluated as high priority ranks. However, the rank of parks away from Baekdudaegan was low. This study has the meaning of selecting conservation priority area using National Ecosystem Survey. In spite of the omission of survey data in national parks and Baekdudaegan, the results were good. Therefore, the priority rank method using species distribution models is useful to selecting protected areas and improving conservation plans. However, it is needed to select protected areas considering various evaluation factors, such as rarity, connectivity, representativeness, focal species and so on because there is a limit to select protected area only using species richness.

      • KCI등재

        연구논문 : 도서생물지리학 관점에서 본 우리나라 도서지역의 조류에 관한 연구

        이상돈 ( Sang Don Lee ) 한국환경영향평가학회 2010 환경영향평가 Vol.19 No.6

        The theory of island biogeography has influenced strongly on the conservation and management issues of species diversity in the islands. The theory has not limited to islands in the ocean, but expanded to isolated and fragmented areas in the forests and urban. This study has a rare opportunity to explore the species diversity and abundance of birds in the islands of Korea. A total of 151 islands in the west and south areas in the Korean peninsula were examined. The number of species and the area of islands were highly significant (P<0.000) and the number of species and the distance from the mainland showed not so strong relationship. This indicated that bird species diversity has more influenced by the size of the islands not the distance. This can be from the study species of birds that can fly long distance, and also natural characteristics of migratory and resident status. Species-area curve showed that the z-value was 0.21 indicating the area and the bird species are strongly correlated. The long-term monitoring of bird species presence in the islands should be followed for a proper management plan.

      • KCI등재

        산림군집구조 조사를 위한 조사구 크기에 관한 연구 5 : 구룡산지역 활엽수혼효림군집 교목층과 관목층의 적정 조사구수

        박인협,서영권 한국환경생태학회 2002 한국환경생태학회지 Vol.15 No.4

        무작위표본추출법에 의한 산림군집구조 조사시 교목층과 관목층의 적정 조사구수를 파악하기 위하여 혼효율이 비교적 높은 구룡산 상금정계곡 활엽수혼효림군집의 교목층과 관목층을 대상으로 각각 10m×10m, 5m×5m 크기의 조사구를 15개씩 설치한 후 종수-면적 곡선, performance curve 등을 적용하였다. 종수-면적 곡선에의한 교목층의 적정 조사구수는 일반적인 수준에서 5개 이상이었으며, 보다 정확성을 요구할 경우 10개 이상이었다. 교목층의 상대중요치에 의한 performance curve를 작성한 결과 조사구수 4개 이상에서 우점종과 준우점종의 구분이 뚜렷해지며, 조사구수 8개 이상에서는 준우점종의 순위가 일정한 경향이었다 교목충의 종다양도는 조사구수 7개 이상에서 비교적 일정한 경향을 보였으며 조사군집을 대표한다고 할 수 있는 전체 조사구수 15개의 종다양도와 0.05 이내의 차이를 보였다. 교목층 전체 조사구수와의 유사도지수는 조사구수 5개 이상에서 80% 이상, 9개 이상에서 90% 이상이었다 관목층의 경우, 종수-면적 곡선에 의한 적정 조사구수는 일반적인 수준에서 5개 이상이었으며, 보다 정확성을 요구할 경우 12개 이상이었다. 관목충의 상대중요치에 의한 performance curve를 작성한 결과 조사구수 4개 이상에서 우점종과 준우점종의 구분이 뚜렷하였으며, 조사구수 13개 이상에서는 준우점종의 순위가 일정한 경향으로 유지되었다. 관목층 종다양도는 조사구수 6개 이상에서 비교적 일정한 경향을 보였으며, 조사군집을 대표한다고 할 수 있는 전체 조사구수 15개의 종다양도와 0.05이내의 차이를 보였다. A mixed forest community of broad-leaved trees in Guryongsan area was studied to determine the adequate number of plots of tree and shrub strata for investigating forest community structure. Fifteen 10m×10m plots were set up in the tree stratum and fifteen 5m×5m plots were set up in the shrub stratum. Species-area curves and performance curves were made from vegetation analysis of the plots In tree stratum, the minimum number of plots where a given percentage increase in number of plots produced less than the same percentage in number of species was five. In tree stratum, minimum number of plots where a given percentage increase in nuts her of plots produced less than the half of the percentage increase in number of species was ten. In tree stratum, minimum number of plots where the dominant species was distinguished from the subdominant species was four In tree stratum. minimum number of plots where the subdominant species were distinguished from each other was eight. In tree stratum, the difference of species diversity(H') between seven or more plots and total fifteen plots was less than 0.05 Similarity index was more than 80% between aye or more plots and total fifteen plots, and more than 90% between nine or more plots and total fifteen plots. In shrub stratum, the minimum number of plots where a given percentage increase in number of plots produced less than the same percentage in number of species was five . In shrub stratum, the minimum number of plots where a given percentage increase in number of plots produced less than the half of the percentage increase in number of species was twelve. In shrub stratum. minimum number of plots where the dominant species was distinguished from the subdominant species was four. In shrub stratum, the minimum number of plots where the subdominant species were distinguished from each other was thirteen. In shrub stratum, the difference of species diversity(H') between six or more plots and total fifteen plots was less than 0.05. Similarity index was more than 80% between five or more plots and total fifteen plots, and more than 90% between nine or more plots and total fifteen plots.

      • SCOPUSKCI등재

        Estimating the habitat potential of inland forest patches for birds using a species-area curve model

        Chung, O.S.,Jang, G.S.,Oh, J.H. The Korean Society for Integrative Biology 2011 Animal cells and systems Vol.15 No.1

        Estimating the habitat potential of inland forest patches for birds requires the modeling of species-area relationships, or relationships between habitat size and numbers of bird species in each patch. The accurate estimation of speciesarea relationships significantly reduces the effort required to recognize the number of species living in each patch. The objective of this study was to estimate the relationship between forest patch size and bird species diversity in Dangjin County, in northwest South Korea, based on the sizes of inland forest patches. KOMPSAT-2 images were obtained and ortho-rectified to construct a map of the target forest patches. The numbers of birds per patch were surveyed four times: August 2008, September 2008, February 2009 and May 2009. Regression models were derived to explain the relationships between the numbers of bird species and patch size. A model that was derived using data from all four observation periods had the highest coefficient of determination ($R^2$). According to these models, the numbers of bird species at first increased linearly with increasing patch size; however, the curve then plateaued. Our model including observations from four seasons will be useful for estimating the numbers of bird species in other inland forest patches in South Korea.

      • KCI등재

        Estimating the habitat potential of inland forest patches for birds using a species-area curve model

        정오식,장갑수,오정학 한국통합생물학회 2011 Animal cells and systems Vol.15 No.1

        Estimating the habitat potential of inland forest patches for birds requires the modeling of species-area relationships, or relationships between habitat size and numbers of bird species in each patch. The accurate estimation of species-area relationships significantly reduces the effort required to recognize the number of species living in each patch. The objective of this study was to estimate the relationship between forest patch size and bird species diversity in Dangjin County, in northwest South Korea, based on the sizes of inland forest patches. KOMPSAT-2 images were obtained and ortho-rectified to construct a map of the target forest patches. The numbers of birds per patch were surveyed four times: August 2008, September 2008, February 2009 and May 2009. Regression models were derived to explain the relationships between the numbers of bird species and patch size. A model that was derived using data from all four observation periods had the highest coefficient of determination (R^2). According to these models, the numbers of bird species at first increased linearly with increasing patch size; however, the curve then plateaued. Our model including observations from four seasons will be useful for estimating the numbers of bird species in other inland forest patches in South Korea.

      • KCI등재
      • KCI등재

        Ecological Attributes of Species Composition by Topographical Positions in the Natural Deciduous Forest

        JiHong Kim,HyeSeon Lee,GwangMo Hwang 강원대학교 산림과학연구소 2011 Journal of Forest Science Vol.27 No.1

        Based upon the vegetation data of woody plants by plot sampling method in the natural deciduous forest of Mt. Jeombong, the study was carried out to examine importance value, rank abundance curve, and species abundance curve, and comparatively evaluate seven different species diversity indices for Shannon-Wiener index, Simpson index, McIntosh index, Log series, Margalef index, Berger-Parker index, and species richness, according to topographic positions. The minimal area which meant only few more species were increased was 3.48 ha in total. The dominant species of valley were Carpinus cordata, Acer pseudo-sieboldianum, Quercus mongolica, Acer mono, and Abies holophylla, and the dominant species of mid-slope were Quercus mongolica, Acer pseudo-sieboldianum, Carpinus cordata, Tilia amurensis, and Fraxinus rhynchophylla. Moreover, the dominant species of ridge were Quercus mongolica, Acer pseudo-sieboldianum, Tilia amurensis, Fraxinus rhynchophylla, and Acer mono. According to rank abundance curve and species abundance curve, species evenness was also low. All of Log series, species richness, Margalef, and Shannon-Wiener index discriminated that valley had the highest diversity, and ridge had the lowest diversity; but, Simpson index, McIntosh index, and Berger-Parker index represented that mid-slope had the highest diversity, and ridge had the lowest diversity. Uniquely, in Berger-Parker index, mid-slope was the higher value than total.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼