RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 음성지원유무
        • 원문제공처
          펼치기
        • 등재정보
          펼치기
        • 학술지명
          펼치기
        • 주제분류
          펼치기
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • Step Bolus와 3D Bolus를 combine 한 Bolus의 유용성 평가

        이창석,채문기,박병석,김성진,주상규,박용철,Lee, Chang-Suk,Chae, Moon-Ki,Park, Byung-Suk,Kim, Sung-Jin,Joo, Kyoo-Sang,Park, Chul-Yong 대한방사선치료학회 2021 대한방사선치료학회지 Vol.33 No.-

        목 적: 3D-bolus와 Step-bolus를 결합한 Bolus를 제작하였고, 그 유용성을 평가한다. 대상 및 방법: 3D 프린터(3D printer, USA)를 이용하여 10mm, 5mm두께로 Bolus를 제작하여 5mm두께의 Bolus에는 5mm의 Step Bolus를 결합하였다. Step bolus와 3D Bolus의 특성을 파악하기위해 두 bolus의 상대적전자밀도, HU값 및 질량밀도(mass density)의 차이를 알아보았다. 이 두개의 Bolus를 인체모형 Phantom에 적용하여 그 실효성을 확인해 보았다. 해당 phantom의 모든 윤곽설정 후, 전산화치료계획시스템(Eclipse 16.1, Varian medical system, USA)을 사용하여 치료계획을 수립하였다. 전자선6MeV을 사용하여 치료계획하고, phantom흉부쪽에 9개의 선량측정 point를 지정하였고, 해당 point에서의 Air-gap을 측정하였으며, 유리선량계(PLD)를 이용하여 적용하는 Bolus마다 동일 point에서의 선량평가를 진행하였다. 결 과: 3D-bolus 5mm와 Step-bolus 5mm를 결합한 Bolus를 제작하였고, 3D-bolus 1cm과 비교 평가하였다. 3D Bolus의 상대적전자밀도(Relative Electron Density)는 1.0559g/cm2, Step Bolus는 1.0590g/cm2로 0.01%이하의 차이여서 상대적전자밀도가 거의 일치했다. Air-gap의 경량 측정에서 Combined bolus는 3D-bolus와 비교하여 지정된 모든 point에 대해서 Air-gap은 많게는 54.32%로 줄거나 같았다. 유리선량계(PLD)를 이용한 선량측정에서는 경사진 point를 제외한 대부분의 point에서 combined bolus를 사용한 phantom에서 치료계획의 선량과의 일치도가 높았다. 결 론: 3D-bolus와 Step-bolus를 결합하여 만든 Combined bolus는 3D-bolus와 Step-bolus가 갖는 각각의 장점을 모두 갖는다. 또한 Air-gap으로 인한 선량부정확성을 억제하여 보다 향상된 선량분포를 보여주어, 효과적인 방사선 치료를 할 수 있다. Objectives: Bolus, which combines 3D-bolus and Step-bolus, was produced and its usefulness is evaluated. Materials and Methods: A Bolus was manufactured with a thickness of 10mm and 5mm using a 3D printer (3D printer, USA), and a Step Bolus of 5mm was bonded to a 5mm thick bolus. In order to understand the characteristics of Step bolus and 3D bolus, the differences in relative electron density, HU value, and mass density of the two bolus were investigated. These two Bolus were applied to anthropomorpic phantom to confirm its effectiveness. After all contouring of the phantom, a treatment plan was established using the computed treatment planning system (Eclipse 16.1, Varian medical system, USA). Treatment plan was performed using electron beam 6MeV, nine dose measurement points were designated on the phantom chest, air-gap was measured at that point, and dose evaluation was performed at the same point for each bolus applied using a glass dosimeter (PLD). Results: Bolus, which combines 3D-bolus 5mm and Step-bolus 5mm, was manufactured and evaluated compared with 3D-bolus 1cm. The relative electron density of 3D Bolus was 1.0559 g/cm2 and the step Bolus was 1.0590 g/cm2, which was different by 0.01%, so the relative electron density was almost the same. In the lightweight measurement of air-gap, the combined bolus was reduced to 54.32% for all designated points compared to 3D-bolus. In the dose measurement using a glass dose meter (PLD), the consistency was high in phantom using combined bolus at most points except the slope point. Conclusion: Combined bolus made by combining 3D-bolus and Step-bolus has all the advantages of 3D-bolus and Step-bolus. In addition, by dose inaccuracy due to Air-gap, more improved dose distribution can be shown, and effective radiation therapy can be performed.

      • KCI등재후보

        3차원 인쇄기술을 이용한 전자소자 연구 동향

        박예슬,이주용,강승균,Park, Yea-Seol,Lee Ju-Yong,Kang, Seung-Kyun 한국마이크로전자및패키징학회 2021 마이크로전자 및 패키징학회지 Vol.28 No.2

        3차원 인쇄 기술은 제품의 설계를 3차원으로 하여 조립없이 제품의 생산까지의 시간을 획기적으로 줄이고 복잡한 구조도 구현할 수 있어 미래의 기술로 각광받고 있다. 본 논문은 3차원 인쇄기술을 이용한 전자소자에 대한 최근 연구동향을 알아보면서 구성품, 전원공급장치와 회로에서의 연결과 3차원 인쇄기술 PCB의 응용한 연구논문들을 소개하고 있다. 3차원 인쇄기술로 제작한 전자소자는 원스톱으로 전자소자, 솔더링(soldering), 스태킹(stacking), 회로의 봉지막(encapsulation)까지 제작함으로써 생산설비의 단순화와 전자기기를 개인 맞춤형을 할 수 있는 가능성을 보여주었다. 3D printing, which designs product in three dimensions, draws attention as a technology that will lead the future for it dramatically shortens time for production without assembly, no matter how complex the structure is. The paper studies the latest researches of 3D-printed electronics and introduces papers studied electronics components, power supply, circuit interconnection and 3D-printed PCBs' applications. 3D-printed electronics showed possibility to simplify facilities and personalize electric devices by providing one-stop printing process of electronic components, soldering, stacking, and even encapsulation.

      • KCI등재

        A Review on 3D Printed Smart Devices for 4D Printing

        이정우,이인환,김호찬,최재원 한국정밀공학회 2017 International Journal of Precision Engineering and Vol.4 No.3

        Multi-material 3D printing with electrically functional materials including conducting, sensing, insulating and semiconducting materials has led to the development of smart devices such as 3D structural electronics, sensors, batteries, etc. Electronically smart devices are a hot issue in 3D printing because they can certainly benefit from 3D printing technology, providing high design flexibility and customized functions. Shape-changing materials (e.g. shape memory polymers) incorporated in 3D printing have given birth to 4D printing, where 3D printed structures change in their shapes by external stimuli (temperature, light, water, etc.). The motivation of this review paper is to discuss mutual benefits from both 3D printed smart devices and 4D printed features, which can be built in a single body. It is expected that the combination of 3D printed smart devices and 4D printing would contribute to the development of high performance, adaptability to the environment and programmable 3D smart devices, which have not yet existed. This paper has reviewed the background of 3D printing, smart device fabrication using 3D printing, development into 4D printing, and future applications of 4D printing.

      • KCI등재

        3D/4D 프린트된 전자기기 및 바이오메디컬 응용기술의 최근 발전

        이효준,한대훈 한국마이크로전자및패키징학회 2023 마이크로전자 및 패키징학회지 Vol.30 No.4

        임의의 3D 구조물을 제작할 수 있는 3D/4D 프린팅 기술의 능력은 프린트된 구조물 디자인에 높은 자유도를제공합니다. 이와 같은 능력은 전자기기 및 바이오 의료 응용분야에 장치 소형화, 맞춤화, 그리고 개인화 추세에 영향을주고 있습니다. 본 Review 논문에서는, 3D/4D 프린팅 기술을 통해 만들어진, 독특하고 특이한 특성을 가진 3D 프린트된전자기기 및 바이오 의료 응용 분야의 최신 정보를 살펴봅니다. 구체적으로, 재활용 및 분해 가능한 전자기기, 메타물질기반 압력 센서, fully 프린트된 휴대용 광검출기, 생체 적합 및 고강도를 가진 치아, 자연모사 마이크로니들, 그리고 3D 세포 배양 및 히스톨로지를 위한 형태 변형 가능한 튜브 어레이와 같은 신흥 영역들을 소개합니다. The ability of 3D/4D printing technology to create arbitrary 3D structures provides a greater degree of freedom in the design of printed structures. This capability has influenced the field of electronics and biomedical applications by enabling the trends of device miniaturization, customization, and personalization. Here, the current stateof- the-art knowledge of 3D printed electronics and biomedical applications with the unique and unusual properties enabled by 3D/4D printing is reviewed. Specifically, the review encompasses emerging areas involving recyclable and degradable electronics, metamaterial-based pressure sensor, fully printed portable photodetector, biocompatible and high-strength teeth, bioinspired microneedle, and transformable tube array for 3D cell culture and histology.

      • KCI등재

        3D 프린팅 응용을 위한 환원그래핀/폴리피롤 복합체 기반의 전도성 폴리카프로락톤 레진의 개발

        정현택(Hyeon Taek Jeong),정화용(Hwa Yong Jung),조영광(Young Kwang Cho),김창현(Chang Hyeon Kim),김용렬(Yong Ryeol Kim) 한국유화학회 2018 한국응용과학기술학회지 Vol.35 No.3

        3D프린팅 기술은 산업적 응용을 넘어서 기계 설비 및 각종 장비의 부품생산뿐만 아니라 의료, 식품, 패션에 이르기까지 많은 시제품들의 개발 및 연구가 진행되고 있다. 3D 프린팅 기반 기술의 적용사례를 볼 때 정밀도와 제작 속도 측면에서도 다른 산업에 충분이 활용될 수 있는 기술의 개발이 보고되고 있으나, 아직까지는 시제품 위주로 이용되고 있으며, 향후 3D 프린팅 기술은 4차산업혁명과 관련하여 광범위한 분야에서 응용될 수 있는 완성품이나 부품제작에 이용될 것으로 예상된다. 본 연구에 서는 탄소나노 재료중 대표적으로 많이 이용되는 환원그래핀 [rGO(reduced graphene oxide)]과 전도성 고분자중 생체 친화적인 특성을 갖는 폴리피롤[Ppy(Polypyrrole)]의 복합체를 생분해성 고분자인 폴리카 프로락톤 [PCL(polycaprolactone)]과 혼합하여 3D 프린팅용 전도성 레진을 개발하고자 하였다. 결과로, 폴리피롤과 환원그래핀 각각 5 wt%, 0.75 wt% 에서 최적의 전기적 특성을 나타내었으며, 환원그래핀의 농도에 따른 표면분석에서도 이와 부합하는 결과를 확인 할 수 있었다. 본 연구를 통하여 제조된 전도성 레진은 3D 프린팅 뿐만 아니라, 다른 산업분야의 전자재료에도 적용이 가능할 것으로 사료된다. 3D Printing technology is developing in various prototypes for medical treatment, food, fashion as well as machinery and equipment parts production. 3D printing technology is also able to fully be utilizedto other industries in terms of developing its technology which has been reported in many field of areas.3D printing technology is expected to be used in various applications related to 4 th industrial revolution such as finished products and parts even it is still carried out in the prototype model. In this study, we have investigated and developed conductive resin for 3d printing application based on reduced graphene oxide(rGO)/Polypyrrole(Ppy) composite and polycaprolactone(PCL) as a biodegradable polymer. The electrical properties and surface morphology of the conductive PCL resin based on therGO/Ppy composite were analyzed by 4point-probe and scanning electron microscope(SEM). The conductive PCL resin based on rGO/Ppy composite is expected to be applicable not only 3D printing, but also electronic materials in other industrial fields.

      • 웹3D 기술을 활용한 중소제조 기업의 e-비즈니스 활용수준 개선방안 연구

        신미해(Shin, Mi-Hae),서수석(Seo, Su-Seok),고방원(Ko, Bang-Won),김의정(Kim, Eui-Jeong),김영철(Kim, Young-Chul) 한국전자상거래학회 2010 전자상거래학회지 Vol.11 No.2

        현재 중소기업, 특히 중소제조 기업의 업무프로세스는 제품의 개발과 영업 및 마케팅에 대한 프로세스가 별도로 운영되어왔다. 또한 중소기업에게 e-비즈니스나 전자상거래를 위한 업무의 수행은 많은 인력과 비용이 소요되어 쉽게 활용되지 못한 측면이 있었다. 그러나 웹3D 기술의 활용은 기존의 제조 기업들이 제품설계를 위해 제작한 3D 데이터를 그대로 재가공하여 다양한 컨텐츠로 변환할 수 있는 기회를 제공하며 One Source-Multi Use를 가능하게 함으로써 생산, 마케팅, 영업의 협업을 통해 업무프로세스의 축소와 통합을 가져온다. 본 논문은 중소제조 기업들이 웹3D 기술을 바탕으로 효과적인 e-비즈니스를 수행할 수 있는 프로세스의 개선방향과 활용 가능성에 대해 논의한다. Recently, the business process of small and medium sized manufacturing corporation was operating separately about development, sales and marketing of products. Utilizing Web 3D is provide opportunity to convert the existing product 3D data into various contents and could integration of business process through collaboration. This study focus a discussion on improvement and using possibility of e-business process on web 3D technology.

      • Experimental investigation of mechanical properties of UV-Curable 3D printing materials

        Hong, Sung Yong,Kim, Ye Chan,Wang, Mei,Kim, Hyung-Ick,Byun, Do-Young,Nam, Jae-Do,Chou, Tsu-Wei,Ajayan, Pulickel M.,Ci, Lijie,Suhr, Jonghwan Elsevier 2018 Polymer Vol.145 No.-

        <P><B>Abstract</B></P> <P>More recently, three dimensional printing (3D Printing), also known as an additive manufacturing (AM), has been highlighted since it shows a great promise to realize almost any three dimensional parts or structures with computer aided design (CAD). Several different processes are available for 3D printing, which includes fused deposition modeling, selective laser sintering, stereolithography, photopolymerization, and etc. In particular, considerable attention is paid to the 3D printing technique with photopolymerization due to their high resolutions. Unfortunately, the 3D printed products with photopolymerization however possess poor mechanical properties. Understanding of this should be necessary for the advantages of the 3D printing to be fully realized. Here, this study experimentally investigates the mechanical properties of the 3D printed photopolymer through thermomechanical analysis and tensile testing. In this study, it is found that the printed specimens are not fully cured after the 3D printing with photopolymerization. DiBenedetto equation is employed to better understand the relationship between the curing status and tensile properties. In addition to the poor mechanical properties, anisotropic and size dependent tensile properties of the 3D printed photopolymers are also observed. Electron beam treatment is used to ensure the cure of the 3D printed photopolymer and the corresponding tensile properties are characterized and investigated.</P> <P><B>Highlights</B></P> <P> <UL> <LI> The interesting mechanical behaviors of 3D printed photopolymer were investigated. </LI> <LI> Anisotropic and size dependent tensile properties are studied by thermal analysis. </LI> <LI> Modeling with DiBenedetto equation was employed to understand curing degree. </LI> <LI> Electron beam treatment was chosen to ensure full cure of 3D printed photopolymer. </LI> </UL> </P> <P><B>Graphical abstract</B></P> <P>[DISPLAY OMISSION]</P>

      • Three-dimensional Printing of Silver Microarchitectures Using Newtonian Nanoparticle Inks

        Lee, Sanghyeon,Kim, Jung Hyun,Wajahat, Muhammad,Jeong, Hwakyung,Chang, Won Suk,Cho, Sung Ho,Kim, Ji Tae,Seol, Seung Kwon American Chemical Society 2017 ACS APPLIED MATERIALS & INTERFACES Vol.9 No.22

        <P>Although three-dimensional (3D) printing has recently emerged as a technology to potentially bring about the next industrial revolution, the limited selection of usable materials restricts its use to simple prototyping. In particular, metallic 3D printing with submicrometer spatial resolution is essential for the realization of 3D-printed electronics. Herein, a meniscus-guided 3D printing method that exploits a low-viscosity (similar to 7 mPa.s) silver nanoparticle (AgNP) ink meniscus with Newtonian fluid characteriftics (which is compatible with conventional inkjet printers) to fabricate 3D silver microarchitectures is reported. Poly(acrylic acid)-capped AgNP ink that exhibits a continuous ink flow through a confined nozzle without aggregation is designed in this study. Guiding the ink meniscus with controlled direction and speed enables both vertical pulling and layer-by-layer processing, resulting in the creation of 3D microobjects with designed shapes other than those for simple wiring. Various highly conductive (>10(4) S.cm(-1)) 3D metallic patterns are demonstrated for applications in electronic devices. This research 18 expected to widen the range of Materials that can be employed in 3D printing technology, with the aim of moving 3D printing beyond prototyping and into real manufacturing platforms for future electronics.</P>

      • IAAL을 통한 다층 3차원 나노 구조물의 제작

        이기웅(Kiwoong Lee),최호섭(Hoseop Choi),김대성(Dae Seong Kim),장민석(Min Seok Jang),최만수(Mansoo Choi) 대한기계학회 2014 대한기계학회 춘추학술대회 Vol.2014 No.11

        There have been intense efforts to stack 2D planar nanostructures in order to amplify its photonic functionality or acquire photonic chirality. In this study, we fabricated multi-layer structures layer-by-layer via consecutive execution of e-beam lithography (EBL) and 3D assembly of nanoparticles. Each layer of multi-layer 3D nanostructures is fabricated through 3-step procedures. (1) Patterns on silicon substrate via EBL. (2) Ion assisted aerosol lithography (IAAL) to fabricate 3D nanostructures. (3) Sintering 3D nanostructures by e-beam irradiation to endure the spin-coating of e-beam resistor (ER). Multi-layer 3D nanostructures were manufactured through the repetition of (1) to (3). Then, finally, ER was eradicated through O2 plasma ashing. In addition, after fabricating the multi-layer 3D nanostructures, we compared the surface enhanced Raman spectroscopy (SERS) signals of 3D mono-layer structures with the signals of 3D multi-layer structures. As a result, it was shown that the peak signal intensity of the SERS of the bi-layer nanostructure was twice as high as the monolayer’s.

      • KCI등재

        Fused Deposition Modeling 3D Printing-based Flexible Bending Sensor

        Sun Kon Lee(이선곤),Young Chan Oh(오영찬),Joo Hyung Kim(김주형) 한국기계가공학회 2020 한국기계가공학회지 Vol.19 No.1

        Recently, to improve convenience, flexible electronics are quickly being developed for a number of application areas. Flexible electronic devices comprise characters such as being bendable, stretchable, foldable, and wearable. Effectively manufacturing flexible electronic devices requires high efficiency, low costs, and simple processes for manufacturing technology. Through this study, we enabled the rapid production of multifunctional flexible bending sensors using a simple, low-cost Fused Deposition Modeling (FDM) 3D printer. Furthermore, we demonstrated the possibility of the rapid production of a range of functional flexible bending sensors using a simple, low-cost FDM 3D printer. Accurate and reproducible functional materials made by FDM 3D printers are an effective tool for the fabrication of flexible sensor electronic devices. The 3D-printed flexible bending sensor consisted of polyurethane and a conductive filament. Two patterns of electrodes (straight and Hilbert curve) for the 3D printing flexible sensor were fabricated and analyzed for the characteristics of bending displacement. The experimental results showed that the straight curve electrode sensor sensing ability was superior to the Hilbert curve electrode sensor, and the electrical conductivity of the Hilbert curve electrode sensor is better than the straight curve electrode sensor. The results of this study will be very useful for the fabrication of various 3D-printed flexible sensor devices with multiple degrees of freedom that are not limited by size and shape.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼