RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Creep behaviour of flexible adhesives

        van Straalen, Ijsbrand J.,Botter, Erik,van den Berg, Arnold,van Beers, Peter The Society of Adhesion and Interface 2004 접착 및 계면 Vol.5 No.2

        Since flexible adhesives are used more and more in structural applications, designers should have a better understanding of its behaviour under various conditions as ultimate load, fatigue load, long-term load and environmental conditions. This paper focuses on long-term load conditions and its effect on flexible adhesives. The creep properties of both PU (PolyUrethane) and SMP (Silyl Modified Polymers) adhesives used for identical applications are considered. To investigate the creep behaviour tests under various conditions were done. The results of those tests are presented and compared. To evaluate these results an empirical method is proposed and discussed. An example illustrates the potential of this method. It is also shown that with use of a probabilistic calibration technique this method results into a simple rule, which can be used to calculate the creep for practical applications. For the studied adhesives, the creep performance of the SMP adhesive is shown to be of the same level or slightly better than of the two PU adhesives. In addition to this empirical method, the principles of a more complex theoretical based method are introduced. The potential of this method is illustrated and future research activities are drawn.

      • KCI등재
      • KCI등재

        A Review of the Role of Bioreactors for iPSCs-Based Tissue-Engineered Articular Cartilage

        Reina-Mahecha Alejandro,Beers Martine J.,van der Veen Hugo C.,Zuhorn Inge S.,van Kooten Theo G.,Sharma Prashant K. 한국조직공학과 재생의학회 2023 조직공학과 재생의학 Vol.20 No.7

        BACKGROUND: Osteoarthritis (OA) is the most common degenerative joint disease without an ultimate treatment. In a search for novel approaches, tissue engineering (TE) has shown great potential to be an effective way for hyaline cartilage regeneration and repair in advanced stages of OA. Recently, induced pluripotent stem cells (iPSCs) have been appointed to be essential stem cells for degenerative disease treatment because they allow a personalized medicine approach. For clinical translation, bioreactors in combination with iPSCs-engineerd cartilage could match patients needs, serve as platform for large-scale patient specific cartilage production, and be a tool for patient OA modelling and drug screening. Furthermore, to minimize in vivo experiments and improve cell differentiation and cartilage extracellular matrix (ECM) deposition, TE combines existing approaches with bioreactors. METHODS: This review summarizes the current understanding of bioreactors and the necessary parameters when they are intended for cartilage TE, focusing on the potential use of iPSCs. RESULTS: Bioreactors intended for cartilage TE must resemble the joint cavity niche. However, recreating human synovial joints is not trivial because the interactions between various stimuli are not entirely understood. CONCLUSION: The use of mechanical and electrical stimulation to differentiate iPSCs, and maintain and test chondrocytes are key stimuli influencing hyaline cartilage homeostasis. Incorporating these stimuli to bioreactors can positively impact cartilage TE approaches and their possibility for posterior translation into the clinics.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼