RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Fatigue performance monitoring of full-scale PPC beams by using the FBG sensors

        Licheng Wang,Jigang Han,Yupu Song 국제구조공학회 2014 Smart Structures and Systems, An International Jou Vol.13 No.6

        When subjected to fatigue loading, the main failure mode of partially prestressed concrete (PPC)structure is the fatigue fracture of tensile reinforcement. Therefore, monitoring and evaluation of the steelstresses/strains in the structure are essential issues for structural design and healthy assessment. The currentstudy experimentally investigates the possibility of using fiber Bragg grating (FBG) sensors to measure thesteel strains in PPC beams in the process of fatigue loading. Six full-scale post-tensioned PPC beams wereexposed to fatigue loading. Within the beams, the FBG and resistance strain gauge (RSG) sensors wereindependently bonded onto the surface of tensile reinforcements. A good agreement was found between therecorded results from the two different sensors. Moreover, FBG sensors show relatively good resistance tofatigue loading compared with RSG sensors, indicating that FBG sensors possess the capability forlong-term health monitoring of the tensile reinforcement in PPC structures. Apart from the above findings, itcan also be found that during the fatigue loading, there is stress redistribution between prestressed andnon-prestressed reinforcements, and the residual strain emerges in the non-prestressed reinforcement. Thisphenomenon can bring about an increase of the steel stress in the non-prestressed reinforcement.

      • SCIESCOPUS

        Fatigue performance monitoring of full-scale PPC beams by using the FBG sensors

        Wang, Licheng,Han, Jigang,Song, Yupu Techno-Press 2014 Smart Structures and Systems, An International Jou Vol.13 No.6

        When subjected to fatigue loading, the main failure mode of partially prestressed concrete (PPC) structure is the fatigue fracture of tensile reinforcement. Therefore, monitoring and evaluation of the steel stresses/strains in the structure are essential issues for structural design and healthy assessment. The current study experimentally investigates the possibility of using fiber Bragg grating (FBG) sensors to measure the steel strains in PPC beams in the process of fatigue loading. Six full-scale post-tensioned PPC beams were exposed to fatigue loading. Within the beams, the FBG and resistance strain gauge (RSG) sensors were independently bonded onto the surface of tensile reinforcements. A good agreement was found between the recorded results from the two different sensors. Moreover, FBG sensors show relatively good resistance to fatigue loading compared with RSG sensors, indicating that FBG sensors possess the capability for long-term health monitoring of the tensile reinforcement in PPC structures. Apart from the above findings, it can also be found that during the fatigue loading, there is stress redistribution between prestressed and non-prestressed reinforcements, and the residual strain emerges in the non-prestressed reinforcement. This phenomenon can bring about an increase of the steel stress in the non-prestressed reinforcement.

      • KCI등재

        Relationship between Dynamic Tensile Strength and Pore Structure of Saturated Concrete under Lateral Pressure

        Hao Wang,Li-cheng Wang,Bahman Ghiassi,Yupu Song,Le Zhou,Dongxu Hou 대한토목학회 2023 KSCE Journal of Civil Engineering Vol.27 No.3

        The dynamic properties of concrete in two states (saturated and dry) were compared and analyzed through a series of dynamic biaxial tensile-compressive (T-C) experimentals. All specimens were subjected to constant biaxial T-C stress ratios (0.5:-1, 0.25:-1, 0.1:-1, 0.05:-1 and 1:0 respectively) at different strain rates (10−5s−1 to 10−2s−1 ). It was found that the biaxial T-C ultimate strengths of both kinds concrete closely relate to the lateral pressure of the specimen, and the independent tensile and compressive strength increases with the increase of strain rate. In the case of exerting lateral pressure, the failure states of specimens show same manner as that of the uniaxial tensile specimens, which indicates that the specimens were completely fractured under tensile loading. The test results show that the biaxial T-C strength of saturated concrete is lower at strain rates of 10−5s−1, whereas it is higher at the other three strain rates (10−4s−1, 10−3s−1 and 10−2s−1). This distinct difference indicates that saturated concrete is more rate sensitive under lateral pressure. Through mechanical analysis the article explains the reason of this phenomenon is mainly dued to the beneficial tensile stress of the pore water surface and the Stefan effect. Meanwhile, the strength prediction expression of saturated concrete was established under the condition of stress ratio and strain rate are considered simultaneously.

      • KCI등재

        The role of CTNNB1 and LEF1 in feather follicles development of Anser cygnoides and Anser anser

        Yue Sun,Yuxuan Zhou,Petunia Msuthwana,Jing Liu,Chang Liu,Cornelius Tlotliso Sello,Yupu Song,Ziqiang Feng,Shengyi Li,Wei Yang,Yunpeng Xu,Xiaomin Yan,Chuanghang Li,Yujian Sui,Jingtao Hu,Yongfeng Sun 한국유전학회 2020 Genes & Genomics Vol.42 No.7

        Background Wingless-types/beta-catenin (Wnt/β-catenin) signaling pathway is one of the most extensively studied transcriptional cascades involved in various types of organogenesis including embryonic and postnatal development. Downy feather quantity is primarily affected by follicular development and gene regulations. Objective This research was aimed to investigate the role of catenin beta-1(CTNNB1) and lymphoid enhancerbinding factor-1 (LEF1) on feather follicles development at different developmental stages. Methods Fluorescence quantitative PCR, Western-blot and immunohistochemical methods were used in Anser cygnoides and Anser anser embryos (E12, E13 E18, and E28) and after birth gosling stages (G18, G48, G88) for gene expression analysis. Results CTNNB1 and LEF1 genes were expressed in Anser cygnoides and Anser anser at different embryonic and after-birth gosling developmental stages and the expression levels were significantly different in different stages (p < 0.05). The mRNA expression of CTNNB1 and LEF1 genes reached the highest level at D88 in Anser cygnoides, while the highest expression levels were at D18 and D88 in Anser anser, and the expression levels of CTNNB1 genes at D88 in all embryonic stages were significantly lower than after-birth stages. CTNNB1 and LEF1 protein expression were the highest at E12 and E28 for Anser cygnoides feather follicles development. While at a similar stage for Anser anser, the expression of CTNNB1 and LEF1 protein was the highest at D48 and D18. Protein expression at embryonic stages was in the epidermis (E) and the hair basal plate (P), the expression site for after-birth stages was in the dermal papilla (DP). Conclusion Our study illustrated that CTNNB1 and LEF1 has an impact on Anser cygnoides and Anser anser feather follicles growth and development.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼