RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Fuzzy adaptive control particle swarm optimization based on T-S fuzzy model of maglev vehicle suspension system

        Chen Chen,Junqi Xu,Guobin Lin,Yougang Sun,Dinggang Gao 대한기계학회 2020 JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY Vol.34 No.1

        At present, with the gradual promotion of Maglev vehicles, the stability of the suspension system has gradually become a hotspot. During the operation of Maglev vehicles, vibration may be caused by external disturbances such as track irregularity, non-directional wind load and load variation. When the vibration amplitude is within the controllable range of the current parameters, the restraint effect can be achieved and the stable convergence can be formed. However, when the vibration amplitude exceeds the current controllable range, the maglev vehicle may break the track or even lose stability. In order to solve the possible adverse effects of external disturbances on the stability of the system, a T-S fuzzy model considering both parameter uncertainties and external disturbances is constructed, and a relatively mature fuzzy adaptive control method is used for suspension control. However, considering the tracking performance of the system control parameters and the response speed of the parameter changes when the external disturbance changes, the particle swarm optimization (PSO) algorithm is used to optimize the system. The effectiveness of the optimized fuzzy adaptive control law in coordinating the closed-loop stability of the suspension system is proved in terms of response speed and convergence performance. Based on linear matrix inequality (LMI), the control response region satisfying the control performance after optimization is defined, and Lyapunov method is adopted to prove the stability of the optimized algorithm in controlling vehicle fluctuation operation. The simulation and experimental results show that the fuzzy adaptive control algorithm optimized by particle swarm optimization can further improve the speed of parameter optimization and the tracking performance of the system in the face of external disturbances and internal system parameter perturbations within a given range of control parameters. Compared with previous control strategies, the controller can greatly improve the response speed and the closed-loop information updating ability of the system in the face of disturbances, so that the system has stronger robustness and faster dynamic response.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼