RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Ultra-Low Cyclic Fatigue Fracture of Q235B and Q345B Steels and Their Butt Welded Joints

        Xiyue Liu,Yidu Bu,Yuanqing Wang,Yang Guan 한국강구조학회 2022 International Journal of Steel Structures Vol.22 No.2

        Earthquake-induced fractures in steel structures are characterised by high-strain low-cycle conditions. In order to investigate the ultra-low cyclic fatigue fracture of steel welded joints under earthquakes, two most commonly used structural steels (Q235B and Q345B) and the corresponding welds were studied by experiments and numerical analysis in this paper. Specimens were extracted from the base material, the weld metal and the heat aff ected zone to investigate the behaviour in diff erent parts of the welded joint. Eighteen smooth round bars were tested under large strain amplitudes, the hysteretic properties, damage degradation characteristics and failure process were analyzed. Constitutive model named Chaboche model was calibrated to describe the cyclic hardening behaviour of these materials. Seventy-two notched round bars with three diff erent notch sizes and two loading protocols were tested to study the fracture behaviour of diff erent materials at different stress triaxialities and diff erent strain amplitudes. Two micromechanical fracture models: cyclic void growth model and degraded signifi cant plastic strain model were calibrated based on the test results. The micromechanical models and Chaboche model were incorporated into numerical simulations by software ABAQUS with subroutine VUMAT to predict the materials fracture. The results show that the failure process under cyclic loads is opposite to that of monotone loads. The dissipation capacity of Q345B is superior to that of Q235B. The fracture resistance deteriorate more in the weld zone under the same loading conditions. The validated models can be used to eff ectively and accurately evaluate the fracture in steel welded connections under ULCF conditions.

      • SCIESCOPUS

        Structural behavior of aluminum reticulated shell structures considering semi-rigid and skin effect

        Liu, Hongbo,Chen, Zhihua,Xu, Shuai,Bu, Yidu Techno-Press 2015 Structural Engineering and Mechanics, An Int'l Jou Vol.54 No.1

        The aluminum dome has been widely used in natatorium, oil storage tank, power plant, coal, as well as other industrial buildings and structures. However, few research has focused on the structural behavior and design method of this dome. At present, most designs of aluminum alloy domes have referred to theories and methods of steel spatial structures. However, aluminum domes and steel domes have many differences, such as elasticity moduli, roof structures, and joint rigidities, which make the design and analysis method of steel spatial structures not fully suitable for aluminum alloy dome structures. In this study, a stability analysis method, which can consider structural imperfection, member initial curvature, semi-rigid joint, and skin effect, was presented and used to study the stability behavior of aluminum dome structures. In addition, some meaningful conclusions were obtained, which could be used in future designs and analyses of aluminum domes.

      • KCI등재

        Structural behavior of aluminum reticulated shell structures considering semi-rigid and skin effect

        Hongbo Liu,Zhihua Chen,Shuai Xu,Yidu Bu 국제구조공학회 2015 Structural Engineering and Mechanics, An Int'l Jou Vol.54 No.1

        The aluminum dome has been widely used in natatorium, oil storage tank, power plant, coal, as well as other industrial buildings and structures. However, few research has focused on the structural behavior and design method of this dome. At present, most designs of aluminum alloy domes have referred to theories and methods of steel spatial structures. However, aluminum domes and steel domes have many differences, such as elasticity moduli, roof structures, and joint rigidities, which make the design and analysis method of steel spatial structures not fully suitable for aluminum alloy dome structures. In this study, a stability analysis method, which can consider structural imperfection, member initial curvature, semi-rigid joint, and skin effect, was presented and used to study the stability behavior of aluminum dome structures. In addition, some meaningful conclusions were obtained, which could be used in future designs and analyses of aluminum domes.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼