http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.
변환된 중국어를 복사하여 사용하시면 됩니다.
( Won-heong Lee ),( Yong-su Jin ) 한국미생물생명공학회(구 한국산업미생물학회) 2017 Journal of microbiology and biotechnology Vol.27 No.9
In simultaneous saccharification and fermentation (SSF) for production of cellulosic biofuels, engineered Saccharomyces cerevisiae capable of fermenting cellobiose has provided several benefits, such as lower enzyme costs and faster fermentation rate compared with wild-type S. cerevisiae fermenting glucose. In this study, the effects of an alternative intracellular cellobiose utilization pathway―a phosphorolytic pathway based on a mutant cellodextrin transporter (CDT-1 (F213L)) and cellobiose phosphorylase (SdCBP)―was investigated by comparing with a hydrolytic pathway based on the same transporter and an intracellular β-glucosidase (GH1-1) for their SSF performances under various conditions. Whereas the phosphorolytic and hydrolytic cellobiose-fermenting S. cerevisiae strains performed similarly under the anoxic SSF conditions, the hydrolytic S. cerevisiae performed slightly better than the phosphorolytic S. cerevisiae under the microaerobic SSF conditions. Nonetheless, the phosphorolytic S. cerevisiae expressing the mutant CDT-1 showed better ethanol production than the glucose-fermenting S. cerevisiae with an extracellular β-glucosidase, regardless of SSF conditions. These results clearly prove that introduction of the intracellular cellobiose metabolic pathway into yeast can be effective on cellulosic ethanol production in SSF. They also demonstrate that enhancement of cellobiose transport activity in engineered yeast is the most important factor affecting the efficiency of SSF of cellulose.
Lee, Won-Heong,Seo, Seung-Oh,Bae, Yi-Hyun,Nan, Hong,Jin, Yong-Su,Seo, Jin-Ho Springer-Verlag 2012 BIOPROCESS AND BIOSYSTEMS ENGINEERING Vol.35 No.9
<P>Engineering of Saccharomyces cerevisiae to produce advanced biofuels such as isobutanol has received much attention because this yeast has a natural capacity to produce higher alcohols. In this study, construction of isobutanol production systems was attempted by overexpression of effective 2-keto acid decarboxylase (KDC) and combinatorial overexpression of valine biosynthetic enzymes in S. cerevisiae D452-2. Among the six putative KDC enzymes from various microorganisms, 2-ketoisovalerate decarboxylase (Kivd) from L. lactis subsp. lactis KACC 13877 was identified as the most suitable KDC for isobutanol production in the yeast. Isobutanol production by the engineered S. cerevisiae was assessed in micro-aerobic batch fermentations using glucose as a sole carbon source. 93 mg/L isobutanol was produced in the Kivd overexpressing strain, which corresponds to a fourfold improvement as compared with the control strain. Isobutanol production was further enhanced to 151 mg/L by additional overexpression of acetolactate synthase (Ilv2p), acetohydroxyacid reductoisomerase (Ilv5p), and dihydroxyacid dehydratase (Ilv3p) in the cytosol.</P>
Engineering of NADPH regenerators in Escherichia coli for enhanced biotransformation
Lee, Won-Heong,Kim, Myoung-Dong,Jin, Yong-Su,Seo, Jin-Ho Springer-Verlag 2013 Applied microbiology and biotechnology Vol.97 No.7
<P>Efficient regeneration of NADPH is one of the limiting factors that constrain the productivity of biotransformation processes. In order to increase the availability of NADPH for enhanced biotransformation by engineered Escherichia coli, modulation of the pentose phosphate pathway and amplification of the transhydrogenases system have been conventionally attempted as primary solutions. Recently, other approaches for stimulating NADPH regeneration during glycolysis, such as replacement of native glyceradehdye-3-phosphate dehydrogenase (GAPDH) with NADP-dependent GAPDH from Clostridium acetobutylicum and introduction of NADH kinase catalyzing direct phosphorylation of NADH to NADPH from Saccharomyces cerevisiae, were attempted and resulted in remarkable impacts on NADPH-dependent bioprocesses. This review summarizes several metabolic engineering approaches used for improving the NADPH regenerating capacity in engineered E. coli for whole-cell-based bioprocesses and discusses the key features and progress of those attempts.</P>
( Won-heong Lee ),( Yong-su Jin ) 한국미생물생명공학회(구 한국산업미생물학회) 2021 Journal of microbiology and biotechnology Vol.31 No.7
Although engineered Saccharomyces cerevisiae fermenting cellobiose is useful for the production of biofuels from cellulosic biomass, cellodextrin accumulation is one of the main problems reducing ethanol yield and productivity in cellobiose fermentation with S. cerevisiae expressing cellodextrin transporter (CDT) and intracellular β-glucosidase (GH1-1). In this study, we investigated the reason for the cellodextrin accumulation and how to alleviate its formation during cellobiose fermentation using engineered S. cerevisiae fermenting cellobiose. From the series of cellobiose fermentation using S. cerevisiae expressing only GH1-1 under several culture conditions, it was discovered that small amounts of GH1-1 were secreted and cellodextrin was generated through trans-glycosylation activity of the secreted GH1-1. As GH1-1 does not have a secretion signal peptide, non-conventional protein secretion might facilitate the secretion of GH1-1. In cellobiose fermentations with S. cerevisiae expressing only GH1-1, knockout of TLG2 gene involved in non-conventional protein secretion pathway significantly delayed cellodextrin formation by reducing the secretion of GH1-1 by more than 50%. However, in cellobiose fermentations with S. cerevisiae expressing both GH1-1 and CDT-1, TLG2 knockout did not show a significant effect on cellodextrin formation, although secretion of GH1-1 was reduced by more than 40%. These results suggest that the development of new intracellular β-glucosidase, not influenced by non-conventional protein secretion, is required for better cellobiose fermentation performances of engineered S. cerevisiae fermenting cellobiose.
Effects of NADH kinase on NADPH-dependent biotransformation processes in Escherichia coli
Lee, Won-Heong,Kim, Jin-Woo,Park, Eun-Hee,Han, Nam Soo,Kim, Myoung-Dong,Seo, Jin-Ho Springer-Verlag 2013 Applied microbiology and biotechnology Vol.97 No.4
<P>Sufficient supply of NADPH is one of the most important factors affecting the productivity of biotransformation processes. In this study, construction of an efficient NADPH-regenerating system was attempted using direct phosphorylation of NADH by NADH kinase (Pos5p) from Saccharomyces cerevisiae for producing guanosine diphosphate (GDP)-L-fucose and ε-caprolactone in recombinant Escherichia coli. Expression of Pos5p in a fed-batch culture of recombinant E. coli producing GDP-L-fucose resulted in a maximum GDP-L-fucose concentration of 291.5?mg/l, which corresponded to a 51?% enhancement compared with the control strain. In a fed-batch Baeyer-Villiger (BV) oxidation of cyclohexanone using recombinant E. coli expressing Pos5p, a maximum ε-caprolactone concentration of 21.6?g/l was obtained, which corresponded to a 96?% enhancement compared with the control strain. Such an increase might be due to the enhanced availability of NADPH in recombinant E. coli expressing Pos5p. These results suggested that efficient regeneration of NADPH was possible by functional expression of Pos5p in recombinant E. coli, which can be applied to other NADPH-dependent biotransformation processes in E. coli.</P>
( Won Heong Lee ),( Eun Hee Park ),( Myoung Dong Kim ) 한국미생물 · 생명공학회 2014 Journal of microbiology and biotechnology Vol.24 No.12
Baeyer-Villiger (BV) oxidation of cyclohexanone to ε-caprolactone in a microbial system expressing cyclohexanone monooxygenase (CHMO) can be influenced by not only the efficient regeneration of NADPH but also a sufficient supply of oxygen. In this study, the bacterial hemoglobin gene from Vitreoscilla stercoraria (vhb) was introduced into the recombinant Escherichia coli expressing CHMO to investigate the effects of an oxygen-carrying protein on microbial BV oxidation of cyclohexanone. Coexpression of Vhb allowed the recombinant E. coli strain to produce a maximum ε-caprolactone concentration of 15.7 g/l in a fed-batch BV oxidation of cyclohexanone, which corresponded to a 43% improvement compared with the control strain expressing CHMO only under the same conditions.