RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Process monitoring in precision cylindrical traverse grinding of slender bar using acoustic emission technology

        Jianjian Wang,Pingfa Feng,Tijian Zha 대한기계학회 2017 JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY Vol.31 No.2

        The precision cylindrical traverse grinding process of slender bar is very complex for the strongly time dependent properties of the wheel. Therefore, it is very difficult for operators to properly judge the grinding state using naked eyes and ears. This calls for automatic monitoring technology that can monitor the process in precision cylindrical traverse grinding to guarantee machining quality and productivity as well as reduction in cost. This study developed an automatic monitoring system for precision cylindrical traverse grinding of slender bar using Acoustic emission (AE) technology. Grinding tests on molybdenum were conducted under traverse conditions in a conventional cylindrical grinder. It was found that larger radial material removal depth results in larger root mean square value of Acoustic emission signals (AE RMS ). Based on this, the AE RMS was analyzed and used to determine the finishing of spark-out process and the pre-processing of tool alignment. The variation tendency of AE RMS in one spark-out process was applied to determine when a wheel wears out and has to be dressed. The experimental results showed that the AE system was effective to monitor the pre-processing of tool alignment, spark-out and wheel wear in precision cylindrical traverse grinding of slender bar.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼