RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • A review of recent advances in the spherical harmonics expansion method for semiconductor device simulation

        Rupp, K.,Jungemann, C.,Hong, S.-M.,Bina, M.,Grasser, T.,,ngel, A. Springer US 2016 Journal of Computational Electronics Vol.15 No.3

        <P>The Boltzmann transport equation is commonly considered to be the best semi-classical description of carrier transport in semiconductors, providing precise information about the distribution of carriers with respect to time (one dimension), location (three dimensions), and momentum (three dimensions). However, numerical solutions for the seven-dimensional carrier distribution functions are very demanding. The most common solution approach is the stochastic Monte Carlo method, because the gigabytes of memory requirements of deterministic direct solution approaches has not been available until recently. As a remedy, the higher accuracy provided by solutions of the Boltzmann transport equation is often exchanged for lower computational expense by using simpler models based on macroscopic quantities such as carrier density and mean carrier velocity. Recent developments for the deterministic spherical harmonics expansion method have reduced the computational cost for solving the Boltzmann transport equation, enabling the computation of carrier distribution functions even for spatially three-dimensional device simulations within minutes to hours. We summarize recent progress for the spherical harmonics expansion method and show that small currents, reasonable execution times, and rare events such as low-frequency noise, which are all hard or even impossible to simulate with the established Monte Carlo method, can be handled in a straight-forward manner. The applicability of the method for important practical applications is demonstrated for noise simulation, small-signal analysis, hot-carrier degradation, and avalanche breakdown.</P>

      • KCI등재

        TCAD simulation of tunneling leakage current in CaF2/Si(111) MIS structures

        Yu.Yu. Illarionov,M.I. Vexler,M. Karner,S.E. Tyaginov,J. Cervenka,T. Grasser 한국물리학회 2015 Current Applied Physics Vol.15 No.2

        We introduce a simulation technique suitable to model the tunneling leakage current in the metal(- polySi)/CaF2/Si(111) MIS structures using TCAD simulators Minimos-NT and ViennaSHE. The simulations are performed using the real physical parameters of the CaF2/Si tunnel barrier. The results obtained for the case of near-equilibrium carrier transport are in a good agreement with experimental data and also with the simulation results yielded by our reference physical model. The obtained non-equilibrium hotelectron tunnel leakages in the hypothetical transistors with CaF2 as a gate dielectric are comparable to those in the structures with silicon dioxide. Being an important step forward for the device application of calcium fluorite, this work opens the possibility of simulating the characteristics of different siliconbased systems with crystalline insulators.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼