RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Whole RNA-sequencing and gene expression analysis of Trichoderma harzianum Tr-92 under chlamydospore-producing condition

        Min Yuan,Yuanyuan Huang,Zhenhua Jia,Weina Ge,Lan Zhang,Qian Zhao,Shuishan Song,Yali Huang 한국유전학회 2019 Genes & Genomics Vol.41 No.6

        Background Trichoderma is one of the most important biocontrol fungi, which could produce mycelia, conidiospores, and chlamydospores three types of propagules under different conditions. Chlamydospores are produced in harsh conditions in various fungi, and may be more resistant to adverse conditions. However, the knowledge associated with the mechanism of chlamydospore formation remained unclear in Trichoderma. Objectives This study is aimed to explore the essential genes and regulatory pathways associated with chlamydospore formation in Trichoderma. Methods The culture condition, survival rate, and biocontrol effects of chlamydospores and conidiospores from Trichoderma. harzianum Tr-92 were determined. Furthermore, the whole transcriptome profiles of T. harzianum Tr-92 under chlamydospore-producing and chlamydospore-nonproducing conditions were performed. Results T. harzianum Tr-92 produced chlamydospores under particular conditions, and chlamydospore-based formulation of T. harzianum Tr-92 exhibited higher biocontrol ability against Botrytis cinerea in cucumber than conidoiospore-based formulation. In the transcriptome analysis, a total of 2,029 differentially expressed genes (DEGs) were identified in T. harzianum Tr-92 under chlamydospore-producing condition, compared to that under chlamydospore-nonproducing condition. GO classification indicated that the DEGs were significantly enriched in 284 terms among biological process, cellular components and molecular function categories. A total of 19 pathways were observed with DEGs by KEGG analysis. Furthermore, fifteen DEGs were verified by quantitative real-time PCR, and the expression profiles were consistent with the transcriptome data. Conclusion The results would provide a basis on the molecular mechanisms underlying Trichoderma sporulation, which would assist the development and application of fungal biocontrol agents.

      • KCI등재

        Genomics and LC-MS Reveal Diverse Active Secondary Metabolites in Bacillus amyloliquefaciens WS-8

        Hongwei Liu,Yana Wang,Qingxia Yang,Wenya Zhao,Liting Cui,Buqing Wang,Liping Zhang,Huicai Cheng,Shuishan Song,Liping Zhang 한국미생물·생명공학회 2020 Journal of microbiology and biotechnology Vol.30 No.3

        Bacillus amyloliquefaciens is an important plant disease-preventing and growth-promoting microorganism. B. amyloliquefaciens WS-8 can stimulate plant growth and has strong antifungal properties. In this study, we sequenced the complete genome of B. amyloliquefaciens WS-8 by Pacific Biosciences RSII (PacBio) Single Molecule Real-Time (SMRT) sequencing. The genome consists of one chromosome (3,929,787 bp) and no additional plasmids. The main bacteriostatic substances were determined by genome, transcriptome, and mass spectrometry data. We thereby laid a theoretical foundation for the utilization of the strain. By genomic analysis, we identified 19 putative biosynthetic gene clusters for secondary metabolites, most of which are potentially involved in the biosynthesis of numerous bioactive metabolites, including difficidin, fengycin, and surfactin. Furthermore, a potential class II lanthipeptide biosynthetic gene cluster and genes that are involved in auxin biosynthesis were found. Through the analysis of transcriptome data, we found that the key bacteriostatic genes, as predicted in the genome, exhibited different levels of mRNA expression. Through metabolite isolation, purification, and exposure experiments, we found that a variety of metabolites of WS-8 exert an inhibitory effect on the necrotrophic fungus Botrytis cinerea, which causes gray mold; by mass spectrometry, we found that the main substances are mainly iturins and fengycins. Therefore, this strain has the potential to be utilized as an antifungal agent in agriculture.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼