RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Genetic variants of the growth differentiation factor 8 affect body conformation traits in Chinese Dabieshan cattle

        Zhao Shuanping,Jin Hai,Xu Lei,Jia Yutang 아세아·태평양축산학회 2022 Animal Bioscience Vol.35 No.4

        Objective: The growth differentiation factor 8 (GDF8) gene plays a key role in bone formation, resorption, and skeletal muscle development in mammals. Here, we studied the genetic variants of GDF8 and their contribution to body conformation traits in Chinese Dabieshan cattle. Methods: Single nucleotide polymorphisms (SNPs) were identified in the bovine GDF8 gene by DNA sequencing. Phylogenetic analysis, motif analysis, and genetic diversity analysis were conducted using bioinformatics software. Association analysis between five SNPs, haplotype combinations, and body conformation traits was conducted in 380 individuals. Results: The GDF8 was highly conserved in seven species, and the GDF8 sequence of cattle was most similar to the sequences of sheep and goat based on the phylogenetic analysis. The motif analysis showed that there were 12 significant motifs in GDF8. Genetic diversity analysis indicated that the polymorphism information content of the five studied SNPs was within 0.25 to 0.5. Haplotype analysis revealed a total of 12 different haplotypes and those with a frequency of <0.05 were excluded. Linkage disequilibrium analysis showed a strong linkage (r2>0.330) between the following SNPs: g.5070C>A, g.5076T>C, and g.5148A>C. Association analysis indicated these five SNPs were associated with some of the body conformation traits (p<0.05), and the animals with haplotype combination H1H1 (-GGGG CCTTAA-) had greater wither height, hip height, heart girth, abdominal girth, and pin bone width than the other (p<0.05) Dabieshan cattle. Conclusion: Overall, our results indicate that the genetic variants of GDF8 affected the body conformation traits of Chinese Dabieshan cattle, and the GDF8 gene could make a strong candidate gene in Dabieshan cattle breeding programs. Objective: The growth differentiation factor 8 (GDF8) gene plays a key role in bone formation, resorption, and skeletal muscle development in mammals. Here, we studied the genetic variants of GDF8 and their contribution to body conformation traits in Chinese Dabieshan cattle.Methods: Single nucleotide polymorphisms (SNPs) were identified in the bovine GDF8 gene by DNA sequencing. Phylogenetic analysis, motif analysis, and genetic diversity analysis were conducted using bioinformatics software. Association analysis between five SNPs, haplotype combinations, and body conformation traits was conducted in 380 individuals.Results: The GDF8 was highly conserved in seven species, and the GDF8 sequence of cattle was most similar to the sequences of sheep and goat based on the phylogenetic analysis. The motif analysis showed that there were 12 significant motifs in GDF8. Genetic diversity analysis indicated that the polymorphism information content of the five studied SNPs was within 0.25 to 0.5. Haplotype analysis revealed a total of 12 different haplotypes and those with a frequency of <0.05 were excluded. Linkage disequilibrium analysis showed a strong linkage (r2>0.330) between the following SNPs: g.5070C>A, g.5076T>C, and g.5148A>C. Association analysis indicated these five SNPs were associated with some of the body conformation traits (p<0.05), and the animals with haplotype combination H1H1 (-GGGG CCTTAA-) had greater wither height, hip height, heart girth, abdominal girth, and pin bone width than the other (p<0.05) Dabieshan cattle.Conclusion: Overall, our results indicate that the genetic variants of GDF8 affected the body conformation traits of Chinese Dabieshan cattle, and the GDF8 gene could make a strong candidate gene in Dabieshan cattle breeding programs.

      • KCI등재

        Molecular Cloning, Expression and Characterization of Bovine UQCC and Its Association with Body Measurement Traits

        Liu, Yongfeng,Zan, Linsen,Zhao, Shuanping,Huang, Honggang,Li, Yong,Tang, Zhonglin,Yang, Shulin,Li, Kui Korean Society for Molecular and Cellular Biology 2010 Molecules and cells Vol.30 No.5

        Ubiquinol-cytochrome c reductase complex chaperone (UQCC) involved in the development and maintenance of bone and cartilage is an important candidate gene for body measurement traits selection through marker-assisted selection (MAS). The expression of UQCC is upregulated in many human and animal models of height as well as other stature indexes. We have cloned the cDNA sequence coding UQCC gene in bovine. Genomic structural analysis indicated that bovine UQCC shares a high similarity with human UQCC. Furthermore, Real-Time PCR analysis showed that the expression of bovine UQCC is remarkably different in diverse tissues, including high level expression in the spleen, heart and windpipe, and relatively low expression in other tissues. We also analyzed allele frequencies in different cattle breeds and an association study on the selected SNPs. SNP DraI A2691T in intron 1 and SNP Bsh1236I A3150G in intron 8 are significantly associated with Body Length (BL), Rump Length (RL), Chest Depth (CD) and Pin Bone Width (PBW). For the A2691T SNP marker, there are significant effects on the RL (p = 0.0001), CD (p = 0.0059) and PBW (p < 0.0001) in 679 individuals; with A3150G SNP marker, there are significant effects on the BL (p = 0.0047) and CD (p = 0.0454). Regarding association analysis of combination of the two SNPs, there are significant effects on the BL (p = 0.0215), CD (p = 0.0282) and PBW (p = 0.0329) in the total population. The results suggest that the UQCC gene is a candidate gene of body measurement traits in bovine reproduction and breeding, and provide data for establishing an animal model using cattle to study big animal body type.

      • KCI등재

        Molecular Cloning, Expression and Characterization of Bovine UQCC and Its Association with Body Measurement Traits

        Yongfeng Liu,Linsen Zan,Shuanping Zhao,Honggang Huang,Yong Li,Zhonglin Tang,Shulin Yang,Kui Li 한국분자세포생물학회 2010 Molecules and cells Vol.30 No.5

        Ubiquinol-cytochrome c reductase complex chaperone (UQCC) involved in the development and maintenance of bone and cartilage is an important candidate gene for body measurement traits selection through marker-assisted selection (MAS). The expression of UQCC is upregulated in many human and animal models of height as well as other stature indexes. We have cloned the cDNA sequence coding UQCC gene in bovine. Genomic structural analysis indicated that bovine UQCC shares a high similarity with human UQCC. Furthermore, Real-Time PCR analysis showed that the expression of bovine UQCC is remarkably different in diverse tissues, including high level expression in the spleen, heart and windpipe, and relatively low expression in other tissues. We also analyzed allele frequencies in different cattle breeds and an association study on the selected SNPs. SNP DraI A2691T in intron 1 and SNP Bsh1236I A3150G in intron 8 are significantly associated with Body Length (BL), Rump Length (RL), Chest Depth (CD) and Pin Bone Width (PBW). For the A2691T SNP marker, there are significant effects on the RL (p = 0.0001), CD (p = 0.0059) and PBW (p < 0.0001) in 679 individuals; with A3150G SNP marker, there are significant effects on the BL (p = 0.0047) and CD (p = 0.0454). Regarding association analysis of combination of the two SNPs, there are significant effects on the BL (p = 0.0215), CD (p = 0.0282) and PBW (p = 0.0329) in the total population. The results suggest that the UQCC gene is a candidate gene of body measurement traits in bovine reproduction and breeding, and provide data for establishing an animal model using cattle to study big animal body type.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼