RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
          펼치기
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        오가피(Eleutherococcus sessiliflorus )의 전연골성 ATDC5 세포의 분화 유도

        스레스타사로즈쿠마 ( Saroj Kumar Shrestha ),송정빈 ( Jungbin Song ),이성현 ( Sung Hyun Lee ),이동헌 ( Donghun Lee ),김호철 ( Hocheol Kim ),소윤조 ( Yunjo Soh ) 대한본초학회 2022 大韓本草學會誌 Vol.37 No.1

        Objectives : The process through which mesenchymal cells condense and differentiate into chondrocytes to form new bone is known as endochondral bone formation. Chondrogenic differentiation and hypertrophy are essential steps in bone formation and are influenced by various factors. The stem bark and root bark of Eleutherococcus sessiliflorus (ES) have been widely used to treat growth retardation and arthritis in traditional Korean Medicine. In this study, we aimed to investigate the possible role of the stem bark of ES in the stimulation of chondrogenic differentiation in clonal murine chondrogenic ATDC5 cells. Methods : In ATDC5 cells treated with ES extract, cell viability and extracellular matrix production were determined using CCK-8 assay and Alcian blue staining, respectively, and alkaline phosphatase activity was measured. We also examined mRNA and protein expression levels of genes related to chondrogenic expression in ATDC5 cells using reverse transcription-polymerase chain reaction and western blot analyses. Results : ES extract increased the accumulation of Alcian blue-stained cartilage nodules and alkaline phosphatase activity in ATDC5 cells. It increased the mRNA expressions of chondrogenic markers including bone sialoprotein (BSP), cartilage collagens, Runt-related transcription factor-2 (RUNX-2), osteocalcin (OCN), β-catenin, and bone morphogenetic protein-2 (BMP-2), as well as the protein expressions of β-catenin, RUNX-2, BMP-2, and alkaline phosphatase (ALP). Conclusion : Taken together, these results suggest that ES extract exhibits a chondromodulating activity and therefore may be a possible agent for the treatment of bone growth disorders.

      • KCI등재

        Seminal Attributes and Semen Cryo-banking of Nepalese Indigenous Achhami (Bos indicus) Bull under Ex-situ Conservation

        Pankaj Kumar Jha,Saroj Sapkota,Neena Amatya Gorkhali,Bhoj Raj Pokharel,Ajeet Kumar Jha,Shishir Bhandari,Bhola Shankar Shrestha 사단법인 한국동물생명공학회 2019 한국동물생명공학회지 Vol.34 No.4

        The study was conducted to evaluate the seminal attributes and cryo-banking of Achhami (Bos indicus) bull semen. Of two Achhami bulls, 8 ejaculates from each bull were evaluated for seminal attributes. For semen freezing and cryo-banking, 4 ejaculates (having ≥2 mL semen volume, ≥75% of sperm motility and ≥1,000 × 106 cells/mL of sperm concentration) from each bull were used. Semen samples were diluted in egg-yolk-tris-citrate extender using a two-step dilution protocol, and were frozen in liquid nitrogen (LN2) vapour in a styrofoam box. The mean semen volume, colour, sperm mass activity, motility, viability, concentration, abnormal acrosome, midpiece and tail and, abnormal head of two Achhami bulls were 4.4 ± 0.5 mL vs. 2.5 ± 0.2 mL, 2.5 ± 0.1 vs. 2.4 ± 0.1, 3.5 ± 0.1 vs. 3.5 ± 0.1, 77.0 ± 1.1% vs. 78.3 ± 1.3%, 94.4 ± 0.5% vs. 91.0 ± 0.6%, 1137.7 ± 73.7 × 106 cells/mL vs. 1060.0 ± 44.3 × 106 cells/mL, 10.2 ± 0.5% vs. 10.3 ± 0.5% and 6.7 ± 0.5% vs. 8.2 ± 0.3%, respectively. The post-thawed sperm motility and viability were 53.0 ± 2.0% vs. 50.0 ± 0.0% and 80.2 ± 0.4% vs. 73.2 ± 0.7%, while evaluating by computer-assisted sperm analysis (CASA) system, the percentage of the progressive motility, fast motility, slow motility, local motility and immotile sperm were 75%, 68%, 7.4%, 16.6% and 8.6%, respectively. A total number of 620 doses semen straw were cryo-banked. Due to the acceptable post-thawed sperm motility and viability recorded, cryopreservation of Achhami semen is hereby recommended so as to preserve the Achhami breed. For further validation, the fertility will be observed from the produced frozen semen.

      • KCI등재

        Seminal Attributes and Semen Cryo-banking of Nepalese Indigenous Achhami (Bos indicus) Bull under Ex-situ Conservation

        Pankaj Kumar Jha,Saroj Sapkota,Neena Amatya Gorkhali,Bhoj Raj Pokharel,Ajeet Kumar Jha,Shishir Bhandari,Bhola Shankar Shrestha 한국동물생명공학회(구 한국동물번식학회) 2019 Journal of Animal Reproduction and Biotechnology Vol.34 No.4

        The study was conducted to evaluate the seminal attributes and cryo-banking of Achhami (Bos indicus) bull semen. Of two Achhami bulls, 8 ejaculates from each bull were evaluated for seminal attributes. For semen freezing and cryo-banking, 4 ejaculates (having ≥2 mL semen volume, ≥75% of sperm motility and ≥1,000 × 106 cells/mL of sperm concentration) from each bull were used. Semen samples were diluted in egg-yolk-tris-citrate extender using a two-step dilution protocol, and were frozen in liquid nitrogen (LN2) vapour in a styrofoam box. The mean semen volume, colour, sperm mass activity, motility, viability, concentration, abnormal acrosome, midpiece and tail and, abnormal head of two Achhami bulls were 4.4 ± 0.5 mL vs. 2.5 ± 0.2 mL, 2.5 ± 0.1 vs. 2.4 ± 0.1, 3.5 ± 0.1 vs. 3.5 ± 0.1, 77.0 ± 1.1% vs. 78.3 ± 1.3%, 94.4 ± 0.5% vs. 91.0 ± 0.6%, 1137.7 ± 73.7 × 106 cells/mL vs. 1060.0 ± 44.3 × 106 cells/mL, 10.2 ± 0.5% vs. 10.3 ± 0.5% and 6.7 ± 0.5% vs. 8.2 ± 0.3%, respectively. The post-thawed sperm motility and viability were 53.0 ± 2.0% vs. 50.0 ± 0.0% and 80.2 ± 0.4% vs. 73.2 ± 0.7%, while evaluating by computer-assisted sperm analysis (CASA) system, the percentage of the progressive motility, fast motility, slow motility, local motility and immotile sperm were 75%, 68%, 7.4%, 16.6% and 8.6%, respectively. A total number of 620 doses semen straw were cryo-banked. Due to the acceptable post-thawed sperm motility and viability recorded, cryopreservation of Achhami semen is hereby recommended so as to preserve the Achhami breed. For further validation, the fertility will be observed from the produced frozen semen.

      • Aloe-emodin inhibits osteogenic differentiation and calcification of mouse vascular smooth muscle cells

        Sapkota, Mahesh,Shrestha, Saroj Kumar,Yang, Ming,Park, Young Ran,Soh, Yunjo Elsevier 2019 european journal of pharmacology Vol.865 No.-

        <P><B>Abstract</B></P> <P>Vascular calcification increases the risk of morbidity and mortality in patients with cardiovascular diseases, chronic kidney diseases, and diabetes. However, viable therapeutic methods to target vascular calcification are limited. Aloe-emodin (AE), an anthraquinone is a natural compound found in the leaves of Aloe-vera. In this study, we investigated the underlying mechanism of AE in the calcification of vascular smooth muscle cells (VSMCs) and murine thoracic aorta. We demonstrate that AE repressed not only the phenotypes of Ca<SUP>2+</SUP> induced calcification but also level of calcium in VSMCs. AE has no effect on cell viability in VSMC cells. Alizarin red, von Kossa stainings and calcium quantification showed that Ca<SUP>2+</SUP> induced vascular calcification is significantly decreased by AE in a concentration-dependent manner. In contrast, AE attenuated Ca<SUP>2+</SUP> induced calcification through inhibiting osteoblast differentiation genes such as SMAD4, collagen 1α, osteopontin (OPN), Runt-related transcription factor (RUNX-2) and Osterix. AE also suppressed Ca<SUP>2+</SUP> induced osteoblast-related protein expression including collagen 1α, bone morphogenic protein 2 (BMP-2), RUNX-2 and smooth muscle actin (SMA). Furthermore, Alizarin red, von Kossa stainings and calcium quantification showed that AE significantly inhibited the calcification of <I>ex vivo</I> ring formation in murine thoracic aorta, and markedly inhibited vitamin D<SUB>3</SUB> induced medial aorta calcification <I>in vivo</I>. Taken together, our findings suggest that AE may have therapeutic potential for the prevention of vascular calcification program.</P>

      • KCI등재

        Effects of fine particulate matter on bone marrow-conserved hematopoietic and mesenchymal stem cells: a systematic review

        Bhattarai Govinda,Shrestha Saroj Kumar,Sim Hyun-Jaung,Lee Jeong-Chae,Kook Sung-Ho 생화학분자생물학회 2024 Experimental and molecular medicine Vol.56 No.-

        The harmful effects of fine particulate matter ≤2.5 µm in size (PM2.5) on human health have received considerable attention. However, while the impact of PM2.5 on the respiratory and cardiovascular systems has been well studied, less is known about the effects on stem cells in the bone marrow (BM). With an emphasis on the invasive characteristics of PM2.5, this review examines the current knowledge of the health effects of PM2.5 exposure on BM-residing stem cells. Recent studies have shown that PM2.5 enters the circulation and then travels to distant organs, including the BM, to induce oxidative stress, systemic inflammation and epigenetic changes, resulting in the reduction of BM-residing stem cell survival and function. Understanding the broader health effects of air pollution thus requires an understanding of the invasive characteristics of PM2.5 and its direct influence on stem cells in the BM. As noted in this review, further studies are needed to elucidate the underlying processes by which PM2.5 disturbs the BM microenvironment and inhibits stem cell functionality. Strategies to prevent or ameliorate the negative effects of PM2.5 exposure on BM-residing stem cells and to maintain the regenerative capacity of those cells must also be investigated. By focusing on the complex relationship between PM2.5 and BM-resident stem cells, this review highlights the importance of specific measures directed at safeguarding human health in the face of rising air pollution.

      • SCIESCOPUSKCI등재

        Suppression of Inflammation, Osteoclastogenesis and Bone Loss by PZRAS Extract

        ( Liang Li ),( Young-ran Park ),( Saroj Kumar Shrestha ),( Hyoung-kwon Cho ),( Yunjo Soh ) 한국미생물 · 생명공학회 2020 Journal of microbiology and biotechnology Vol.30 No.10

        Panax ginseng has a wide range of activities including a neuroprotective effect, skin protective effects, enhanced DNA repairing, anti-diabetic activity, and protective effects against vascular inflammation. In the present study, we sought to discover the inhibitory effects of a mixture of natural products containing Panax ginseng, Ziziphus jujube, Rubi fructus, Artemisiae asiaticae and Scutellaria baicalensis (PZRAS) on osteoclastogenesis and bone remodeling, as neither the effects of a mixture containing Panax ginseng extract, nor its molecular mechanism on bone inflammation, have been clarified yet. PZRAS upregulated the levels of catalase (CAT), superoxide dismutase (SOD), glutathione reductase (GSH-R) and glutathione peroxidase (GSH-Px) and reduced malondialdehyde (MDA) in LPS-treated RAW264.7 cells. Moreover, treatment with PZRAS decreased the production of IL-1β and TNF-α. PZRAS also inhibited osteoclast differentiation through inhibiting osteoclastspecific genes like MMP-2, 9, cathepsin K, and TRAP in RANKL-treated RAW264.7 cells. Additionally, PZRAS has inhibitory functions on the RANKL-stimulated activation of ERK and JNK, which lead to a decrease in the expression of NFATc1 and c-Fos. In an in vivo study, bone resorption induced by LPS was recovered by treatment with PZRAS in bone volume per tissue volume (BV/TV) compared to control. Furthermore, the ratio of eroded bone surface of femurs was significantly increased in LPS-treated mice compared to vehicle group, but this ratio was significantly reversed in PZRAS-treated mice. These results suggest that PZRAS could prevent or treat disorders with abnormal bone loss.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼