RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • Compressive strength and failure behaviour of fibre reinforced concrete at elevated temperatures

        Shaikh, F.U.A.,Taweel, M. Techno-Press 2015 Advances in concrete construction Vol.3 No.4

        This paper presents the effects of elevated temperatures of $400^{\circ}C$ and $800^{\circ}C$ on the residual compressive strength and failure behaviour of fibre reinforced concretes and comparison is made with that of unreinforced control concrete. Two types of short fibres are used in this study e.g., steel and basalt fibres. The results show that the residual compressive strength capacity of steel fibre reinforced concrete is higher than unreinforced concrete at both elevated temperatures. The basalt fibre reinforced concrete, on the other hand, showed lower strength retention capacity than the control unreinforced concrete. However, the use of hybrid steel-basalt fibre reinforcement recovered the deficiency of basalt fibre reinforced concrete, but still slightly lower than the control and steel fibres reinforced concretes. The use of fibres reduces the spalling and explosive failure of steel, basalt and hybrid steel-basalt fibres reinforced concretes oppose to spalling in deeper regions of ordinary control concrete after exposure to above elevated temperatures. Microscopic observation of steel and basalt fibres surfaces after exposure to above elevated temperatures shows peeling of thin layer from steel surface at $800^{\circ}C$, whereas in the case of basalt fibre formation of Plagioclase mineral crystals on the surface are observed at elevated temperatures.

      • SCIESCOPUSKCI등재

        Laboratory Simulation of Corrosion Damage in Reinforced Concrete

        Altoubat, S.,Maalej, M.,Shaikh, F.U.A. Korea Concrete Institute 2016 International Journal of Concrete Structures and M Vol.10 No.3

        This paper reports the results of an experimental program involving several small-scale columns which were constructed to simulate corrosion damage in the field using two accelerated corrosion techniques namely, constant voltage and constant current. A total of six columns were cast for this experiment. For one pair of regular RC columns, corrosion was accelerated using constant voltage and for another pair, corrosion was accelerated using constant current. The remaining pair of regular RC columns was used as control. In the experiment, all the columns were subjected to cyclic wetting and drying using sodium chloride (NaCl) solution. The currents were monitored on an hourly interval and cracks were visually checked throughout the test program. After the specimens had suffered sufficient percentage steel loss, all the columns including the control were tested to failure in compression. The test results generated show that accelerated corrosion using impressed constant current produces more corrosion damage than that using constant voltage. The results suggest that the constant current approach can be better used to simulate corrosion damage of reinforced concrete structures and to assess the effectiveness of various materials, repair strategies and admixtures to resist corrosion damage.

      • KCI등재

        Laboratory Simulation of Corrosion Damage in Reinforced Concrete

        S. Altoubat,M. Maalej,F. U. A. Shaikh 한국콘크리트학회 2016 International Journal of Concrete Structures and M Vol.10 No.3

        This paper reports the results of an experimental program involving several small-scale columns which were constructed to simulate corrosion damage in the field using two accelerated corrosion techniques namely, constant voltage and constant current. A total of six columns were cast for this experiment. For one pair of regular RC columns, corrosion was accelerated using constant voltage and for another pair, corrosion was accelerated using constant current. The remaining pair of regular RC columns was used as control. In the experiment, all the columns were subjected to cyclic wetting and drying using sodium chloride (NaCl) solution. The currents were monitored on an hourly interval and cracks were visually checked throughout the test program. After the specimens had suffered sufficient percentage steel loss, all the columns including the control were tested to failure in compression. The test results generated show that accelerated corrosion using impressed constant current produces more corrosion damage than that using constant voltage. The results suggest that the constant current approach can be better used to simulate corrosion damage of reinforced concrete structures and to assess the effectiveness of various materials, repair strategies and admixtures to resist corrosion damage.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼