RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Field Test on Uplift Bearing Capacity of Rock-Socketed Belled Piles

        Qinke Wang,Jianlin Ma,Zili Xiao,Wenlong Chen,Yukun Ji 대한토목학회 2020 KSCE JOURNAL OF CIVIL ENGINEERING Vol.24 No.8

        The thick sandstone with an upper layer of clay (2 m to 3 m) was identified at the transmission line projects in western China. Tower foundations are affected by extreme weather such as strong wind and snow all the year round, so the research of foundation uplift is very significant. Belled piles are widely used in the area due to its high uplift bearing capacity, however, further research studies regarding the uplift bearing capacity of the belled piles in this special scenario still need to be conducted. The uplift bearing characteristics of five rock-socketed belled piles were studied by field testing method. The load-displacement curves, fitting analysis of load-displacement curves, change rate of pullout stiffness, distribution of axial force alone the pile, and pile side friction were analyzed. Observation results show that the load-displacement curves of rock-socketed belled piles are steeply changed. Moreover, we find that the hyperbolic model can provide a good fitting result for load-displacement curves, and the ultimate uplift bearing capacity is suggested to be predicted by using a reduction parameter of 0.64 − 0.85. Both uplift bearing capacity coefficient Nu and utilization ratio of pile material ηincrease with the increase of L/d under a same diameter, while the growth rate decreases. In this paper, the significant size effect is observed with increasing of pile diameter. The change rate of pullout stiffness-displacement curves are consistent with the trend of the safety factor-displacement curves, and can be fitted by power function model. Additionally, the change rate of pullout stiffness at the limit state will decrease to around 154 in this study, which can be used as the instability threshold for the rock-socketed belled piles in a similar soil foundation.

      • KCI등재

        Experimental Analysis of Vertical Deformation and Bearing Characteristics of Bridge Piles in High and Steep Slopes

        Yuanyuan Wang,Ronggui Deng,Tao Guo,Yi Sun,Bo Huang,Qinke Wang 대한토목학회 2023 KSCE Journal of Civil Engineering Vol.27 No.3

        More and more rigid frame bridges with high piers and large spans are built in the high and steep slope areas of deep valleys in southwest China. The slow deformation of the slope in the geological sense often causes the problems of piles, which in turn causes damage of the upper bridges. The vertical bearing characteristics of bridge piles in slope still need to be conducted because of the peculiarity of slope topography. The vertical deformation and bearing characteristics of piles in the slope area were experimentally studied by considering different influencing factors and the fitting formula for the ultimate bearing capacity of the piles under vertical load is obtained. The results show that the vertical deformation and ultimate bearing capacity (defined by vertical limit settlement deformation of 0.013 times the pile diameter) of the pile are closely related to its position in the slope. The pile in the middle of the slope has the lowest vertical ultimate bearing capacity. Moreover, the side frictional resistance transfer depth of the pile in continuous slope is greater than that of the pile in unilateral slope. Additionally, the slope angle has a significant influence on the vertical bearing performance of piles. The delayed settlement of the pile top decreases approximately 40% at most and the vertical ultimate bearing capacity of the pile increases 48.6% at most as the slope angle decreases by 15°. Meanwhile, the side friction resistance of the pile increases with the decrease of slope angle. The bending moment applied to the pile top reduces the vertical ultimate bearing capacity of the pile and increases the axial force of the pile body. The results can provide data support for pile design and instability judgment with similar geological conditions.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼