RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Bioelectrochemical system for landfill leachate treatment – challenges, opportunities, and recommendations

        Areeb Shehzad,Mohammed J. K. Bashir,Sumathi Sethupathi,Jun-Wei Lim,Muhammad Younas 한국자원공학회 2016 Geosystem engineering Vol.19 No.6

        Increasing awareness of the energy–environment centers leads to the development of new technologies that have a direct impact on energy production and consumption during environmental remediation. Bioelectrochemical system (BES) is anticipated to be the emerging technology for the simultaneous removal/recovery of resources such as energy, nutrients, water, and heavy metals. Organic compounds inside the leachate are oxidized by micro-organisms which in turn lead to the production of energy and other value-added resources. Through the integration of membrane process such as forward osmosis in BES will help to recover the high-quality water for applications like agricultural. Recovery of metals is largely affected by uncertainty in concentration but still recovery of metal is achievable in leachate. Phosphorous and ammonia can be recovered through cathode reduction reactions driven by electricity generation. Low bioavailability of landfill leachate is one of the major challenges for BES which can be improved through proper pretreatment of landfill leachate. Another challenge of achieving the metal recovery from leachate is the low concentration of heavy metals. System scaling up remains as a great confront, especially for BES as energy production and consumption balance needs to be well understood. This review paper identified the key challenges, opportunities, and future recommendations for the recovery of resources from leachate using BES.

      • Stage by stage design for primary, conventional activated sludge, SBR and MBBR units for residential wastewater treatment and reusing

        Aziz, Shuokr Qarani,Omar, Imad Ali,Bashir, Mohammed J.K.,Mojiri, Amin Techno-Press 2020 Advances in environmental research Vol.9 No.4

        To date, there is no central wastewater (WW) treatment plant in Erbil city, Kurdistan region, Iraq. Therefore, raw WW disposes to the environment and sometimes it used directly for irrigation in some areas of Erbil city. Disposal of the untreated WW to the natural environment and using for irrigation it causes problems for the people and the environment. The aims of the current work were to study the characteristics, design of primary and different secondary treatment units and reusing of produced WW. Raw WW samples from Ashty city-Erbil city were collected and analyzed for twenty three quality parameters such as Total Suspended Solids (TSS), total dissolved solids, total volatile and non-volatile solids, total acidity, total alkalinity, total hardness, five-day Biochemical Oxygen Demand (BOD5), Chemical Oxygen Demand (COD), biodegradability ratio (BOD5/COD), turbidity, etc. Results revealed that some parameters such as BOD5 and TSS were exceeded the standards for disposal of WW. Design and calculations for primary and secondary treatment (biological treatment) processes were presented. Primary treatment units such as screening, grit chamber, and flow equalization tank were designed and detailed calculation were illustrated. While, Conventional Activated Sludge (CAS), Sequencing Batch Reactor (SBR) and Moving Bed Biofilm Reactors (MBBR) were applied for the biological treatment of WW. Results revealed that MBBR was the best and economic technique for the biological treatment of WW. Treated WW is suitable for reusing and there is no restriction on use for irrigation of green areas inside Ashty city campus.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼