RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCIESCOPUSKCI등재

        Effect of Cassoy-urea Pellet as a Protein Source in Concentrate on Ruminal Fementation and Digestibility in Cattle

        Wanapat, Metha,Promkot, C.,Wanapat, S. Asian Australasian Association of Animal Productio 2006 Animal Bioscience Vol.19 No.7

        Four male crossbred native beef cattle (average body weight of 427.7 kg) were randomly allocated to four types of cassoy-urea pellet as a source of protein in concentrate according to a $4{\times}4$ Latin square design to determine effect of diets on ruminal fermentation and nutrient digestibility. The four types of cassoy-urea pellets contained cassava hay, soybean meal, urea and binding agent at 79.2:19.8:0:1 (27.9% CP dry matter), 78.4:19.6:1:1 (30.4% CP), 77.6:19.4:2:1 (33.0% CP) and 99:0:0:1 (23.8% CP) for dietary treatments; 1, 2, 3 and 4, respectively. All four concentrate mixtures contained similar crude protein levels (11% CP) and were fed to animals in two equal parts (0.5% of body weight per day) while urea-treated rice straw (5% urea) was given ad libitum. The experiment revealed that dietary concentrate treatments had no effect on dry matter intake while digestibilities of neutral-detergent fiber and crude protein were higher (p<0.05) in cattle fed dietary treatments 1, 2 and 3 than in cattle fed dietary treatment 4. Ruminal ammonia-nitrogen ($NH_3$-N), was higher and acetic acid concentration (C2) and ratio of C2 to propionic acid (C3) were lower (p<0.05) in cattle fed dietary treatments 1, 2 and 3 than in those on treatment 4. It is concluded that use of cassoy-urea pellet as a protein source in concentrates for cattle resulted in improvement of digestibility, ruminal fermentation and rumen ecology. Further research using cassoy-urea pellet in feeding trials with milking cows and fattening beef should be undertaken.

      • SCIESCOPUSKCI등재

        Effect of Carbohydrate Sources and Levels of Cotton Seed Meal in Concentrate on Feed Intake, Nutrient Digestibility, Rumen Fermentation and Microbial Protein Synthesis in Young Dairy Bulls

        Wanapat, Metha,Anantasook, N.,Rowlinson, P.,Pilajun, R.,Gunun, P. Asian Australasian Association of Animal Productio 2013 Animal Bioscience Vol.26 No.4

        The objective of this study was to investigate the effect of levels of cottonseed meal with various carbohydrate sources in concentrate on feed intake, nutrient digestibility, rumen fermentation and microbial protein synthesis in dairy bulls. Four, 6 months old dairy bulls were randomly assigned to receive four dietary treatments according to a $2{\times}2$ factorial arrangement in a $4{\times}4$ Latin square design. Factor A was carbohydrate source; cassava chip (CC) and cassava chip+rice bran in the ratio of 3:1 (CR3:1), and factor B was cotton seed meal levels in the concentrate; 109 g CP/kg (LCM) and 328 g CP/kg (HCM) at similar overall CP levels (490 g CP/kg). Bulls received urea-lime treated rice straw ad libitum and were supplemented with 10 g of concentrate/kg BW. It was found that carbohydrate source and level of cotton seed meal did not have significant effects on ruminal pH, ammonia nitrogen concentration, microbial protein synthesis or feed intake. Animals which received CC showed significantly higher BUN concentration, ruminal propionic acid and butyric acid proportions, while dry matter, organic matter digestibility, populations of total viable bacteria and proteolytic bacteria were lower than those in the CR3:1 treatment. The concentration of total volatile fatty acids was higher in HCM than LCM treatments, while the concentration of butyric acid was higher in LCM than HCM treatments. The population of proteolytic bacteria with the LCM treatments was higher than the HCM treatments; however other bacteria groups were similar among the different levels of cotton seed meal. Bulls which received LCM had higher protein digestibility than those receiving HCM. Therefore, using high levels of cassava chip and cotton seed meal might positively impact on energy and nitrogen balance for the microbial population in the rumen of the young dairy bull.

      • SCIESCOPUSKCI등재

        Effect of Carbohydrate Source and Cottonseed Meal Level in the Concentrate on Feed Intake, Nutrient Digestibility, Rumen Fermentation and Microbial Protein Synthesis in Swamp Buffaloes

        Wanapat, Metha,Pilajun, R.,Polyorach, S.,Cherdthong, A.,Khejornsart, P.,Rowlinson, P. Asian Australasian Association of Animal Productio 2013 Animal Bioscience Vol.26 No.7

        The objective of this study was to investigate the effect of carbohydrate source and cottonseed meal level in the concentrate on feed intake, nutrient digestibility, rumen fermentation and microbial protein synthesis in swamp buffaloes. Four, 4-yr old rumen fistulated swamp buffaloes were randomly assigned to receive four dietary treatments according to a $2{\times}2$ factorial arrangement in a $4{\times}4$ Latin square design. Factor A was carbohydrate source; cassava chip (CC) and CC+rice bran at a ratio 3:1 (CR3:1), and factor B was level of cottonseed meal (CM); 109 g CP/kg (LCM) and 328 g CP/kg (HCM) in isonitrogenous diets (490 g CP/kg). Buffaloes received urea-treated rice straw ad libitum and supplemented with 5 g concentrate/kg BW. It was found that carbohydrate source did not affect feed intake, nutrient intake, digested nutrients, nutrient digestibility, ammonia nitrogen concentration, fungi and bacterial populations, or microbial protein synthesis (p>0.05). Ruminal pH at 6 h after feeding and the population of protozoa at 4 h after feeding were higher when buffalo were fed with CC than in the CR3:1 treatment (p<0.05). Buffalo fed with HCM had a lower roughage intake, nutrient intake, population of total viable and cellulolytic bacteria and microbial nitrogen supply than the LCM fed group (p<0.05). However, nutrient digestibility, ruminal pH, ammonia concentration, population of protozoa and fungi, and efficiency of microbial protein synthesis were not affected by cottonseed meal levels (p>0.05). Based on this experiment, concentrate with a low level of cottonseed meal could be fed with cassava chips as an energy source in swamp buffalo receiving rice straw.

      • SCIESCOPUSKCI등재

        Effect of Cassava Hay in High-quality Feed Block as Anthelmintics in Steers Grazing on Ruzi Grass

        Wanapat, Metha,Khampa, S. Asian Australasian Association of Animal Productio 2006 Animal Bioscience Vol.19 No.5

        Six, one-year old dairy steers were randomly divided into two groups according to a Completely randomized design (CRD) to receive high-quality feed block (HQFB) without cassava hay and drenching (HQFB1+Ivomex) and HQFB with cassava hay (HQFB2) as block licks while grazing on Ruzi grass pasture. During the eight weeks, fecal parasitic egg counts dramatically declined for both treatment groups with 63.2 and 27.6% reduction from initial period for HQFB1+Ivomex and HQFB2, respectively. However, digestion of coefficients of nutrients particularly OM, were significantly higher in HQFB2 than, those in HQFB1+Ivomex, in addition, ADG of animals in HQFB2 tended to be higher than the group on HQFB1. It was, hence concluded that cassava hay could not only provide as a protein source but also serve as an anthelmintic in ruminants.

      • KCI등재

        Effect of bamboo grass (Tiliacora triandra, Diels) pellet supplementation on rumen fermentation characteristics and methane production in Thai native beef cattle

        Chinda Wann,Metha Wanapat,Chaowarit Mapato,Thiwakorn Ampapon,Bi-zhi Huang 아세아·태평양축산학회 2019 Animal Bioscience Vol.32 No.8

        Objective: The objective of this study was to investigate the effect of bamboo grass (Tiliacora triandra, Diels) pellet (Bamboo-Cass) supplementation on feed intake, nutrient digestibility, rumen microbial population and methane production in Thai native beef cattle. Methods: Four Thai native beef cattle bulls (190±2 kg) were randomly allotted to four respective dietary treatments in a 4×4 Latin square design. Treatments were the varying levels of Bamboo-Cass supplementation at 0, 50, 100, and 150 g/head/d, respectively. Rice straw was fed ad libitum and the concentrate offered at 0.5% of body weight. Results: Under this experiment, the findings revealed that acetate and butyrate production were decreased (p<0.05), propionate increased (p<0.05), whilst ruminal NH3-N concentration was decreased (p<0.05) by supplementation of Bamboo-Cass at 150 g/head/d. Moreover, rice straw intake, and microbial population were linearly increased (p<0.05), while methane production was decreased (p<0.05). Conclusion: The results from the present study indicate that supplementation of Bamboo-Cass at 150 g/head/d significantly enhanced feed intake, decreased protozoa and increased bacterial population, rumen fermentation efficiency while decreased methane production. Therefore, Bamboo-Cass as a supplement is promising as a rumen enhancer in beef cattle fed on rice straw.

      • SCIESCOPUSKCI등재

        Dietary rambutan peel powder as a rumen modifier in beef cattle

        Ampapon, Thiwakorn,Wanapat, Metha Asian Australasian Association of Animal Productio 2020 Animal Bioscience Vol.33 No.5

        Objective: The experiment was conducted to study the effect of rambutan (Nephelium lappaceum) fruit peel powder (RP) on feed consumption, digestibility of nutrients, ruminal fermentation dynamics and microbial population in Thai breed cattle. Methods: Four, 2-year old (250±15 kg) beef bull crossbreds (75% Brahman×25% local breed) were allotted to experimental treatments using a 4×4 Latin square design. Four dietary supplementation treatments were imposed; non-supplementation (control, T1); supplementation of RP fed at 2% of dry matter intake (DMI) (low, T2); supplementation of RP fed at 4% of DMI (medium, T3) and supplementation of RP fed at 6% of DMI (high, T4). All cattle were given a concentrate supplement at 1% of body weight while Napier grass was provided as a free choice. Results: The findings revealed that RP supplementation did not negatively affect (p>0.05) DMI of Napier grass, while RP intake and total DMI were the greatest in the RP supplementation at 4% and 6% DMI. Nevertheless, the nutrients (dry matter, organic matter, crude protein, neutral detergent fiber, and acid detergent fiber) digestibilities were not changed in the RP supplementation groups. Rumen fermentation parameters especially those of total volatile fatty acids, acetate and butyrate were not significantly changed. However, the propionate concentration was remarkably increased (p<0.05) in the RP supplementation. Notably, the ratio of acetate to propionate, the number of protozoa, as well as the methane estimation were significantly reduced in the RP supplemented groups (4% and 6% of DMI), while the counts of bacteria was not altered. Conclusion: Supplementation of RP (4% of DMI) improved rumen propionate production, reduced protozoal population and methane estimation (p<0.05) without a negative effect on feed consumption and nutrients total tract digestibilities in beef cattle. Using dietary rambutan fruit peel powder has potential promise as a rumen regulator.

      • SCIESCOPUSKCI등재

        Rumen bacteria influence milk protein yield of yak grazing on the Qinghai-Tibet plateau

        Fan, Qingshan,Wanapat, Metha,Hou, Fujiang Asian Australasian Association of Animal Productio 2021 Animal Bioscience Vol.34 No.9

        Objective: Ruminants are completely dependent on their microbiota for rumen fermentation, feed digestion, and consequently, their metabolism for productivity. This study aimed to evaluate the rumen bacteria of lactating yaks with different milk protein yields, using high-throughput sequencing technology, in order to understand the influence of these bacteria on milk production. Methods: Yaks with similar high milk protein yield (high milk yield and high milk protein content, HH; n = 12) and low milk protein yield (low milk yield and low milk protein content, LL; n = 12) were randomly selected from 57 mid-lactation yaks. Ruminal contents were collected using an oral stomach tube from the 24 yaks selected. High-throughput sequencing of bacterial 16S rRNA gene was used. Results: Ruminal ammonia N, total volatile fatty acids, acetate, propionate, and isobutyrate concentrations were found to be higher in HH than LL yaks. Community richness (Chao 1 index) and diversity indices (Shannon index) of rumen microbiota were higher in LL than HH yaks. Relative abundances of the Bacteroidetes and Tenericutes phyla in the rumen fluid were significantly increased in HH than LL yaks, but significantly decreased for Firmicutes. Relative abundances of the Succiniclasticum, Butyrivibrio 2, Prevotella 1, and Prevotellaceae UCG-001 genera in the rumen fluid of HH yaks was significantly increased, but significantly decreased for Christensenellaceae R-7 group and Coprococcus 1. Principal coordinates analysis on unweighted UniFrac distances revealed that the bacterial community structure of rumen differed between yaks with high and low milk protein yields. Furthermore, rumen microbiota were functionally enriched in relation to transporters, ABC transporters, ribosome, and urine metabolism, and also significantly altered in HH and LL yaks. Conclusion: We observed significant differences in the composition, diversity, fermentation product concentrations, and function of ruminal microorganisms between yaks with high and low milk protein yields, suggesting the potential influence of rumen microbiota on milk protein yield in yaks. A deeper understanding of this process may allow future modulation of the rumen microbiome for improved agricultural yield through bacterial community design.

      • SCIESCOPUSKCI등재

        Effect of Elemental Sulfur Supplementation on Rumen Environment Parameters and Utilization Efficiency of Fresh Cassava Foliage and Cassava Hay in Dairy Cattle

        Promkot, C.,Wanapat, Metha Asian Australasian Association of Animal Productio 2009 Animal Bioscience Vol.22 No.10

        Effect of sulfur (S) on utilization efficiency of fresh cassava foliage and cassava hay in dairy cows was evaluated using thirty-two $1^{st}-2^{nd}$ lactation Holstein-Friesian crossbred dairy cows. The experimental treatment was a 2${\times}$2 factorial arrangement in a randomized complete block design (RCBD) using two roughages (rice straw+fresh cassava foliage (FCF) and rice straw+cassava hay (CH)) and two elemental sulfur (S) levels (0.15 and 0.4% S of dry matter (DM)), respectively. Four dietary treatments (FCF+0.15, FCF+0.4, CH+0.15 and CH+0.4) were offered ad libitum in the form of a total mixed ration (TMR) with concentrate to roughage (chopped rice straw+chopped cassava foliage) ratio at 60:40. Fresh cassava foliage or cassava hay resulted in similar dry mater intake, rumen ecology parameters, total tract digestibility, blood chemistry, milk production and composition. However, HCN intake, blood and milk thiocyanate concentration were significantly higher (p<0.01) in cows fed fresh cassava foliage with no sign of potential toxicity. Dry matter intake, body weight changes, molar percentage of propionate in rumen, neutral detergent fiber (NDF) digestibility and nitrogen (N) retention of cows tended to be increased while DM digestibility (65.6, 72.7, 68.6 and 72.1% of total DM intake for the respective treatments), rumen bacteria population (1.4, 1.7, 1.6 and $1.7{\times}10^{11}$ cell/ml for respective treatments), fungal zoospore population (0.4, 0.6, 0.4 and $0.5{\times}10^{6}$ cell/ml for respective treatments), urinary allantoin (25.3, 28.0, 26.3 and 27.6 g/d for respective treatments), microbial N yield (136.0, 154.6, 142.8 and 151.3 g N/d for respective treatments) and milk protein content (3.4, 3.5, 3.2 and 3.5% for respective treatments) were significantly (p<0.05) higher in cows fed on supplemented sulfur at 0.4% of DM in comparison with 0.15% S-supplemented diets. Based on these results, it is concluded that cassava foliage could be used as a portion of roughage for dairy cows and supplementation of S would be nutritionally beneficial.

      • SCIESCOPUSKCI등재

        Estimation of Ruminal Degradation and Intestinal Digestion of Tropical Protein Resources Using the Nylon Bag Technique and the Three-step In vitro Procedure in Dairy Cattle on Rice Straw Diets

        Promkot, C.,Wanapat, Metha,Rowlinson, P. Asian Australasian Association of Animal Productio 2007 Animal Bioscience Vol.20 No.12

        The experiment was carried out using fistulated multiparous Holstein Friesian crossbred (75% Holstein Friesian and 25% Red Sindhi) dairy cows in their dry period fed on untreated rice straw to evaluate the nutritive value of local protein feed resources using the in sacco method and in vitro pepsin-pancreatin digestion. Experimental feeds were cottonseed meal (CSM); soybean meal (SBM); dried brewery's grains (DBG); palm kernel meal (PSM); cassava hay (CH); leucaena leaf meal (LLM). Each feedstuff was weighed into duplicate nylon bags and incubated in each of the two rumen fistulated cows for 0, 2, 4, 8, 16, 24, and 48 h. Rumen feed residues from bags of 16 h incubation were used for estimation of lower gut digestibility by the technique of in vitro pepsin-pancreatin digestion. Ruminal ammonia-nitrogen ($NH_3-N$) concentrations did not differ between treatments or time with a mean of 5.5 mg%. Effective degradability of DM of CSM, SBM, DBG, PSM, CH and LLM were 41.9, 56.1, 30.8, 47.0, 41.1 and 47.5%, respectively. Effective degradabilities of the CP in feedstuffs were 49.6, 59.2, 40.9, 33.5, 47.3 and 65.0% for the respective feedstuffs. The CP in vitro pepsin-pancreatin digestibility as ranked from the highest to the lowest were SBM, CSM, LLM, CH, DBG, PSM, respectively. The intestinal and total tract digestion of feedstuffs in the current study were relatively lower than that obtained from previous literature. The results of this study indicate that SBM and LLM were highly degradable in the rumen, while CH, CSM and DBG were less degradable and, hence resulted in higher rumen undegradable protein. Soybean meal and LLM could be used to improve rumen ecology whilst CH, CSM and DBG could be used as rumen by-pass protein for ruminant feeding in the tropics.

      • KCI등재

        New roughage source of Pennisetum purpureum cv. Mahasarakham utilization for ruminants feeding under global climate change

        Chaowarit Mapato,Metha Wanapat 아세아·태평양축산학회 2018 Animal Bioscience Vol.31 No.12

        Objective: As the climate changes, it influences ruminant’s feed intake, nutrient digestibility, rumen methane production and emission. This experiment aimed to evaluate the effect of feeding Sweet grass (Pennisetum purpureum cv. Mahasarakham; SG) as a new source of good quality forage to improve feed utilization efficiency and to mitigate rumen methane production and emission. Methods: Four, growing crossbred of Holstein Friesian heifers, 14 months old, were arranged in a 4×4 Latin square design to receive four dietary treatments. Treatment 1 (T1) was rice straw (RS) fed on ad libitum with 1.0% body weight (BW) of concentrate (C) supplementation (RS/1.0C). Treatment 2 (T2) and treatment 3 (T3) were SG, fed on ad libitum with 1.0% and 0.5% BW of concentrate supplementation, respectively (SG/1.0C and SG/0.5C, respectively). Treatment 4 (T4) was total Sweet grass fed on ad libitum basis with non-concentrate supplementation (TSG). Results: The results revealed that roughage and total feed intake were increased with SG when compared to RS (p<0.01) while TSG was like RS/1.0C treatment. Digestibility of nutrients, nutrients intake, total volatile fatty acids (VFAs), rumen microorganisms were the highest and CH4 was the lowest in the heifers that received SG/1.0C (p<0.01). Total dry matter (DM) feed intake, digestibility and intake of nutrients, total VFAs, NH3-N, bacterial and fungal population of animals receiving SG/0.5C were higher than those fed on RS/1.0C. Reducing of concentrate supplementation with SG as a roughage source increased NH3-N, acetic acid, and fungal populations, but it decreased propionic acid and protozoal populations (p<0.05). However, ruminal pH and blood urea nitrogen were not affected by the dietary treatments (p>0.05). Conclusion: As the results, SG could be a good forage to improve rumen fermentation, decrease methane production and reduced the level of concentrate supplementation for growing ruminants in the tropics especially under global climate change.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼