RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Deep transcriptome sequencing reveals the expression of key functional and regulatory genes involved in the abiotic stress signaling pathways in rice

        R.C. Venu,M.V. Sreerekha,M. Sheshu Madhav,Kan Nobuta,K. Madhan Mohan,Songbiao Chen,Yulin Jia,Blake C. Meyers,Guo-Liang Wang 한국식물학회 2013 Journal of Plant Biology Vol.56 No.4

        Drought, salt and cold are the major abiotic stresses that limit the rice production. Identification of the key functional and regulatory genes in the abiotic stress signaling pathways is important for understanding the molecular basis of abiotic stress tolerance. In this study, we investigated the transcriptomes of rice leaves and roots under cold, drought, and salt stresses using the massively parallel signature sequencing (MPSS) and sequencing by synthesis (SBS) technologies. About 1.8 to 2.6 million individual signatures were obtained from the seven abiotic-stressed and control libraries of the japonica cultivar Nipponbare. A total of 102,630 and 1,414,788 distinct signatures were obtained from the MPSS and SBS libraries, respectively. Clustering analysis identified many up- and down-regulated genes specifically and commonly expressed in the cold, drought and salt-treated plant leaves and roots. Data mining revealed the expression patterns of key functional and regulatory genes that were involved in different abiotic stress signaling pathways. Highly conserved cis-regulatory elements in the promoter of the up-regulated genes were identified. Our comprehensive and deep survey of abiotic stress transcriptome of rice has provided candidate genes for further understanding the molecular basis of abiotic stress tolerance in rice.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼