RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Energy dissipation rate control and parallel equations solving method for planar spined quadruped bouncing robot

        Mohsen Azimi,M. R. Hairi Yazdi 대한기계학회 2017 JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY Vol.31 No.2

        This paper continues our investigation into Energy dissipation rate control (EDRC) and Parallel equations solving method (PESM). Our previous works showed how EDRC enables us to provide stable walking or running gaits for legged robots via controlling robot’s loss of energy rate during Impact phases (IP). This is while PESM facilitates the trajectory designing process of the robot’s active joints during each Single support phase (SSP) by solving the robot’s inverse kinematic and inverse dynamic equations in parallel. Even though PESM is very powerful and suitable for both quadruped robot, and despite the under actuation problem at the ankle joint, and biped robots, despite the presence of Zero momentum point criteria (ZMP) at the ankle joint, still, this method is limited to robots just with three and five DoFs. Therefore, the main purpose hereis to show how it is possible to extend the application of PESL to a spined quadruped robot with four DoFs by employment of the Central pattern generator (CPG) controller units and finding a connection among CPG’s output, PESM and the robot’s foot placement. Besides, as EDRC is employed to realize a stable bouncing gait for the robot, a whole numerical study is performed on the robot’s impact dynamic equations to evaluate the effect of spine joint on the robot’s impact dynamics.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼