RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Microstructures and mechanical properties of friction stir welded dissimilar steel-copper joints

        M. Jafari,M. Abbasi,D. Poursina,A. Gheysarian,B. Bagheri 대한기계학회 2017 JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY Vol.31 No.3

        Welding dissimilar metals by fusion welding is challenging. It results in welding defects. Friction stir welding (FSW) as a solid-state joining method can overcome these problems. In this study, 304L stainless steel was joined to copper by FSW. The optimal values of the welding parameters traverse speed, rotational speed, and tilt angle were obtained through Response surface methodology (RSM). Under optimal welding conditions, the effects of welding pass number on the microstructures and mechanical properties of the welded joints were investigated. Results indicated that appropriate values of FSW parameters could be obtained by RSM and grain size refinement during FSW mainly affected the hardness in the weld regions. Furthermore, the heat from the FSW tool increased the grain size in the Heat-affected zones (HAZs), especially on the copper side. Therefore, the strength and ductility decreased as the welding pass number increased because of grain size enhancement in the HAZs as the welding pass number increased.

      • The Effect of Anisotropy on Thin-Walled Tube Bending

        K. Hasanpour,B. Amini,M. Poursina,M. Barati 한국소성가공학회 2011 기타자료 Vol.2011 No.8

        Thin-walled tube bending has found many of its applications in the automobile and aerospace industries. The rotary-draw-bending method which is a complex physical process with multi-factor interactive effects is one of the advanced tube forming processes with high efficiency, high forming precision, low consumption and good flexibility for bending angle changes. However it may produce a wrinkling phenomenon, over thinning and cross-section distortion if the process parameters are inappropriate. Wrinkles propagate permanently in thin-walled tube, but finally, localize in a finite zone and lead to failure. The prediction of wrinkling in thin-walled tube bending processes has been a challenging topic. In this paper, firstly, the plastic deforming behavior and wrinkling mechanism for a thin-walled tube is simulated and the results will compare with the available experimental ones. Then, the effect of anisotropy on ovalization, thickness and wrinkling of tube will be investigated using FEM. Extensive numerical results are presented showing the effects of the various kinds of materials and geometric parameters on wrinkling using anisotropic yield function.

      • KCI등재

        Impact noise radiated by collision of two spheres: Comparison between numerical simulations, experiments and analytical results

        K. Mehraby,H. Khademhosseini Beheshti,M. Poursina 대한기계학회 2011 JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY Vol.25 No.7

        Impact is very common source of noise in the industries. The impacts can be visible, such as forging, and can be invisible, such as impacts due to clearance of hinges. As a result of this generality, the control of impact noise needs more attention. Reduction of this tiresome noise needs enough perception about the impact. A study of this noise sources presents difficult problems both theoretically and experimentally. This is partly due to the many complex interconnected mechanical phenomena that occur and partly due to the fact that usual steady-state techniques of analysis cannot be applied. In such complex problems numerical techniques can help to acousticians. To gain some insight into this source of sound, in this paper collision of two steel spheres are studied with finite element method (FEM). Then the FEM results were compared with experiments to show authority of this numerical method to simulate impact noises. FEM results show that if the vibrational modes are excited by impact, the vibrational modes can be as effective as rigid body motion.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼