RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Impedance spectroscopy study of zinc oxide incorporated iron borate glass-ceramic

        Ramteke Rajat,Kumari Kalpana,Bhattacharya Soumalya,Sharma Sanjeev Kumar,Rahman M.R. 한국물리학회 2021 Current Applied Physics Vol.22 No.-

        Here, the effects of zinc oxide (ZnO) on impedance and dielectric properties of the ZnO incorporated iron borate (Fe3BO6) glass-ceramics were studied using impedance spectroscopy in a wide range of frequency (1 Hz – 1 MHz) and temperature (25 ◦C–250 ◦C). With ZnO addition, the ε′ and tanδ values were reduced significantly, the strength of the relaxation process also decreased, along with a decrease in conductivity. Activation energies associated with modulus and conductivity plots suggest that similar type of charge carriers was responsible for the relaxation and conduction processes. The analysis of both complex impedance and conductivity show the negative temperature coefficient of resistance (NTCR) behavior of the samples. The thermistor constant B-values of 5ZnO and 10ZnO were found to be 7223 and 7088 respectively. The study of the NTCR properties suggests a potential candidate for thermistor applications.

      • KCI등재

        A study on transport and plugging of sodium aerosol in leak paths of concrete blocks

        Narayanam Sujatha Pavan,Sen Soubhadra,Kumari Kalpana,Kumar Amit,Pujala Usha,Subramanian V.,Chandrasekharan S.,Preetha R.,Venkatraman B. 한국원자력학회 2024 Nuclear Engineering and Technology Vol.56 No.1

        In the event of a severe accident in Sodium Cooled Fast Reactors (SFR), the sodium combustion aerosols along with fission product aerosols would migrate to the environment through leak paths of the Reactor Containment Building (RCB) concrete wall under positive pressure. Understanding the characteristics of sodium aerosol transport through concrete leak paths is important as it governs the environmental source term. In this context, experiments are conducted to study the influence of various parameters like pressure, initial mass concentration, leak path diameter, humidity etc., on the transport and deposition of sodium aerosols in straight leak paths of concrete. The leak paths in concrete specimens are prepared by casting and the diameter of the leak path is measured using thermography technique. Aerosol transport experiments are conducted to measure the transported and plugged aerosol mass in the leak paths and corresponding plugging times. The values of differential pressure, aerosol concentration and relative humidity taken for the study are in the ranges 10–15 kPa, 0.65–3.04 g/m3 and 30–90% respectively. These observations are numerically simulated using 1-Dimensional transport equation. The simulated values are compared with the experimental results and reasonable agreement among them is observed. From the safety assessment view of reactor, the approach presented here is conservative as it is with straight leak paths.

      • A study on transport and plugging of sodium aerosol in leak paths of concrete blocks

        Sujatha Pavan Narayanam,Soubhadra Sen,Kalpana Kumari,Amit Kumar,Usha Pujala,V. Subramanian,S. Chandrasekharan,R. Preetha,B. Venkatraman Korean Nuclear Society 2024 Journal of The Korean Nuclear Society Vol.56 No.1

        In the event of a severe accident in Sodium Cooled Fast Reactors (SFR), the sodium combustion aerosols along with fission product aerosols would migrate to the environment through leak paths of the Reactor Containment Building (RCB) concrete wall under positive pressure. Understanding the characteristics of sodium aerosol transport through concrete leak paths is important as it governs the environmental source term. In this context, experiments are conducted to study the influence of various parameters like pressure, initial mass concentration, leak path diameter, humidity etc., on the transport and deposition of sodium aerosols in straight leak paths of concrete. The leak paths in concrete specimens are prepared by casting and the diameter of the leak path is measured using thermography technique. Aerosol transport experiments are conducted to measure the transported and plugged aerosol mass in the leak paths and corresponding plugging times. The values of differential pressure, aerosol concentration and relative humidity taken for the study are in the ranges 10-15 kPa, 0.65-3.04 g/m<sup>3</sup> and 30-90% respectively. These observations are numerically simulated using 1-Dimensional transport equation. The simulated values are compared with the experimental results and reasonable agreement among them is observed. From the safety assessment view of reactor, the approach presented here is conservative as it is with straight leak paths.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼