RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Development of mucosal vaccine delivery: an overview on the mucosal vaccines and their adjuvants

        Rahmi Anggraeni,Ika Dewi Ana,Hevi Wihadmadyatami 대한백신학회 2022 Clinical and Experimental Vaccine Research Vol.11 No.3

        Currently, mucosal infectious diseases are still a very high global health burden, but there are few effective vaccines to prevent mucosal-borne diseases. The development of mucosal vaccines requires the selection of appropriate antigens, delivery system strategies, and adjuvants to increase vaccine efficacy but limited studies have been conducted. The aim of this review is to describe the mucosal immune system, as well as the potential for the development of vaccines and mucosal adjuvants, and their challenges. The study was conducted by applying inclusion criteria for the articles, and a review was conducted by two readers with the agreement. It was known that mucosal vaccination is a potential route to be applied in future preventive efforts through vaccination. However, limited studies have been conducted so far and limited mucosal vaccination has been approved. New technological approaches such as material development involving nano- and micro-patterning are important to intensively open and investigate the potential area of development to provide better vaccination methods.

      • KCI등재

        Bioceramic hydroxyapatite-based scaffold with a porous structure using honeycomb as a natural polymeric Porogen for bone tissue engineering

        Mona Sari,Puspa Hening,Chotimah,Ika Dewi Ana,Yusril Yusuf 한국생체재료학회 2021 생체재료학회지 Vol.25 No.1

        Background: The application of bioceramic hydroxyapatite (HA) derived from materials high in calcium to tissue engineering has been of concern, namely scaffold. Scaffold pores allow for cell mobility metabolic processes, and delivery of oxygen and nutrients by blood vessel. Thus, pore architecture affects cell seeding efficiency, cell viability, migration, morphology, cell proliferation, cell differentiation, angiogenesis, mechanical strength of scaffolds, and, eventually, bone formation. Therefore, to improve the efficacy of bone regeneration, several important parameters of the pore architecture of scaffolds must be carefully controlled, including pore size, geometry, orientation, uniformity, interconnectivity, and porosity, which are interrelated and whose coordination affects the effectiveness of bone tissue engineering. The honeycomb (HCB) as natural polymeric porogen is used to pore forming agent of scaffolds. It is unique for fully interconnected and oriented pores of uniform size and high mechanical strength in the direction of the pores. The aim of this study was therefore to evaluate the effect of HCB concentration on macropore structure of the scaffolds. Methods: Bioceramic hydroxyapatite (HA) was synthesized from abalone mussel shells (Halioitis asinina) using a precipitation method, and HA-based scaffolds were fabricated with honeycomb (HCB) as the porogen agent. Pore structure engineering was successfully carried out using HCB at concentrations of 10, 20, and 30 wt%. Results: The Energy Dispersive X-Ray Spectroscopy (EDS) analysis revealed that the Ca/P molar ratio of HA was 1.67 (the stoichiometric ratio of HA). The Fourier Transform Infrared Spectroscopy (FTIR) spectra results for porous HAbased scaffolds and synthesized HA showed that no chemical decomposition occurred in the HA-based scaffold fabrication process. The porosity of the scaffold tended to increase when higher concentrations of HCB were added. XRD data show that the HCB was completely degraded from the scaffold material. The cell metabolic activity and morphology of the HA + HCB 30 wt% scaffold enable it to facilitate the attachment of MC3T3E1 cells on its surface. Conclusion: HCB 30 wt% is the best concentration to fabricate the scaffold corresponding to the criteria for pores structure, crystallographic properties, chemical decomposition process and cell viability for bone tissue engineering.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼