RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
          펼치기
        • 주제분류
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Stress Corrosion Cracking Behavior of Cold Worked 316L Stainless Steel in Chloride Environment

        ( Sung Joon Pak ),( Heongkyu Ju ) 한국주조공학회 2020 한국주조공학회지 Vol.40 No.5

        The outcomes of solution annealing and stress corrosion cracking in cold-worked 316L austenitic stainless steel have been studied using x-ray diffraction (XRD) and the slow strain rate test (SSRT) technique. The good compatibility with a high-temperature water environment allows 316L austenitic stainless steel to be widely adopted as an internal structural material in light water reactors. However, stress corrosion cracking (SCC) has recently been highlighted in the stainless steels used in commercial pressurized water reactor (PWR) plants. In this paper, SCC and inter granular cracking (IGC) are discussed on the basis of solution annealing in a chloride environment. It was found that the martensitic contents of cold-worked 316L stainless steel decreased as the solution annealing time was increased at a high temperature. Moreover, mode of SCC was closely related to use of a chloride environment. The results here provide evidence of the vital role of a chloride environment during the SCC of coldworked 316L.

      • Determination of the optimum viewing distance for a multi-view auto-stereoscopic 3D display.

        Yoon, Ki-Hyuk,Ju, Heongkyu,Park, Inkyu,Kim, Sung-Kyu Optical Society of America 2014 Optics express Vol.22 No.19

        <P>We present methodologies for determining the optimum viewing distance (OVD) for a multi-view auto-stereoscopic 3D display system with a parallax barrier. The OVD can be efficiently determined as the viewing distance where statistical deviation of centers of quasi-linear distributions of illuminance at central viewing zones is minimized using local areas of a display panel. This method can offer reduced computation time because it does not use the entire area of the display panel during a simulation, but still secures considerable accuracy. The method is verified in experiments, showing its applicability for efficient optical characterization.</P>

      • Optimization of an organic photovoltaic device via modulation of thickness of photoactive and optical spacer layers

        Li, Qi,Yoon, Won Jung,Ju, Heongkyu Springer 2014 NANOSCALE RESEARCH LETTERS Vol.9 No.1

        <P>We examine the modulation effects of thicknesses of both a photoactive layer (a bulk-heterojunction (BHJ) of poly(3-hexylthiophene) and [6,6]-phenyl-C61-butyric acid methyl ester (P3HT:PCBM)) and an optical spacer of a transparent metal oxide, for power conversion efficiency optimization of organic photovoltaic devices. The redistribution of the optical intensity at the photoactive layer via the thickness modulation of both layers is taken into account, to produce three-dimensional (3D) plots as a function of both layer thicknesses of 0 to 400 nm range (5 nm step), for the device efficiency optimization. The modulation pattern of absorption is produced in the 3D plot as scanning the thicknesses of both layers as a result of modulation of interference between incoming and reflected light, which can be secured by changing the effective optical path length between two electrodes of a photovoltaic device. It is also seen that the case of inserting the spacer of the higher refractive index demands finer adjustment of the spacer layer thickness to achieve the optimum device efficiency.</P><P>In addition, the series resistance of the photoactive layer of the thickness range of 0 to 70 nm is taken into account to provide the 3D plots as a function of the scanned thicknesses of both layers. Inclusion of the series resistance of the photoactive layer, which is also the function of its thickness, in the simulation, indicates that the series resistance can influence qualitatively the dependence of power conversion efficiency (PCE) on the thicknesses of both layers. We also find that minimization of series resistance, e.g., by device annealing, allows not only the relevant voltage to increase but also the optimum thickness of the photoactive layer to increase, leading to more absorption of light.</P>

      • KCI등재

        진공 원심 주조를 이용한 Ti-48Al-2Cr-2Nb 합금 터보차저 터빈휠 제작

        박성준 ( Sung Joon Pak ),주형규 ( Heongkyu Ju ) 한국주조공학회 2021 한국주조공학회지 Vol.41 No.2

        고온 환경에 대한 우수한 특성을 바탕으로 산업 장비의 고온 재료에 Ti-48Al-2Cr-2Nb 합금이 사용된다. 본 연구에서는 Ti-48Al-2Cr-2Nb 합금 터보 차저 터빈 휠을 진공 원심 주조 방법으로 제작했다. 알루미나 몰드를 이용한 원심 주조시 터보 차저 터빈 휠 블레이드의 미스런 불량을 방지하기 위한 조건을 조사하였다. 진공 원심 주조로 제조된 합금의 미세 구조는 광학 현미경(OM), 마이크로 비커스 경도 분석기 (HV), X- 선 회절 (XRD) 및 SEM-EDS로 연구하였다. 주조된 Ti-48Al-2Cr-2Nb 합금의 경도 및 SEM-EDS 결과는 산화층 (α- 케이스)의 두께가 일반적으로 50μm 미만임을 보여주었다. 예열 온도 1,100℃, RPM260, 게이트 크기가 큰 알루미나 몰드의 경우 미스런 불량이 거의 없었다. 따라서 높은 예열 온도, 중간 RPM, 큰 게이트 크기 및 알파 케이스 형성 억제를 위한 알루미나 몰드를 통해 미스런이 적은 Ti-48Al-2Cr-2Nb 합금 터보 차저 터빈 휠을 얻을 수 있음을 확인했다. Based on its good compatibility with high-temperature environments, the Ti-48Al-2Cr-2Nb alloy is used for high-temperature materials of industrial equipment. In this study, a Ti-48Al-2Cr-2Nb alloy turbocharger turbine wheel was fabricated by a vacuum centrifugal casting method. The conditions that prevent misrun defects of the turbocharger turbine wheel blade from centrifugal casting using alumina molds were investigated. The microstructure of the alloy prepared by vacuum centrifugal casting was studied by means of optical microscopy (OM), with a micro-Vickers hardness analyzer (HV), by X-ray diffraction (XRD) and by SEMEDS. The HV and SEM-EDS examinations of the as-cast Ti-48Al-2Cr-2Nb alloy showed that the thickness of the oxide layer (α- case) was typically less than 50 μm. At a high preheating temperature of 1,100℃, a moderate RPM of 260, and with an alumina mold with a large gate size, there were almost no misrun defects. Therefore, it was confirmed that a Ti-48Al-2Cr-2Nb alloy turbocharger turbine wheel with fewer misrun defects could be achieved through a high preheating temperature, a moderate RPM, a large gate size and an alumina mold to suppress the formation of alpha-case components.

      • Bimetal coated optical fiber sensors based on surface plasmon resonance induced change in birefringence and intensity.

        Nguyen, Tan Tai,Lee, Eun-Cheol,Ju, Heongkyu Optical Society of America 2014 Optics express Vol.22 No.5

        <P>We present a surface plasmon resonance (SPR) based multimode fiber sensor with non-golden bimetallic coating. Our detection scheme used, which is capable of measuring the combined effects of SPR-induced birefringence and intensity changes, supported the minimum resolvable refractive index (RI) of 5.8 10(-6) RIU with the operating RI range of 0.05 to be experimentally obtained at a single wavelength (632.8 nm) without non-spectroscopic techniques. The asymmetric profile of the thickness of the bimetal coating on the fiber core together with the inherent range of incidence angle for multimode propagation also contributed to the wide operating range. The SPR fiber device with the detection scheme demonstrated will be likely to be developed as a real-time label-free and highly sensitive diagnostic device of a wide operating range for biomedical and biochemical applications in a portable format.</P>

      • SCIESCOPUSKCI등재

        Nanoscale Floating-Gate Characteristics of Colloidal Au Nanoparticles Electrostatically Assembled on Si Nanowire Split-Gate Transistors

        Hyeong-Seok Jeon,Bonghyun Park,Chi-Won Cho,Chae-Hyun Lim,Heongkyu Ju,Hyunsuk Kim,Sangsig Kim,Seung-Beck Lee 대한전자공학회 2006 Journal of semiconductor technology and science Vol.6 No.2

        Nanoscale floating-gate characteristic of colloidal Au nanoparticles electrostatically assembled on the oxidized surface of Si nanowires have been investigated. The Si nanowire split-gate transistor structure was fabricated by electron beam lithography and subsequent reactive ion etching. Colloidal Au nanoparticles with ~5 ㎚ diameters were selectively deposited onto the Si nanowire surface by 2 min electrophoresis. It was found that electric fields applied to the self-aligned split side gates allowed charge to be transferred on the Au nanoparticles. It was observed that the depletion mode cutoff voltage, induced by the self-aligned side gates, was shifted by more than 1 V after Au nanoparticle electrophoresis. This may be due to the semi-one dimensional nature of the narrow Si nanowire transport channel, having much enhanced sensitivity to charges on the surface.

      • Label-Free Optical Biochemical Sensors via Liquid-Cladding-Induced Modulation of Waveguide Modes

        Tran, Nhu Hoa Thi,Kim, Jisoo,Phan, Thang Bach,Khym, Sungwon,Ju, Heongkyu American Chemical Society 2017 ACS APPLIED MATERIALS & INTERFACES Vol.9 No.37

        <P>We demonstrated modulation of the waveguide mode mismatch via liquid cladding of the controllable refractive index for label-free quantitative detection of concentration of chemical or biological substances. A multi mode optical fiber with its core exposed was used as the sensor head with the suitable chemical modification of its surface. Injected analyte liquid itself formed the liquid cladding for the waveguide. We found that modulation of the concentration of analyte injected enables a degree of the waveguide mode mismatch to be controlled, resulting in sensitive change in optical power transmission, which was utilized for its real-time quantitative assay. We applied the device to quantitating concentration of glycerol and bovine serum albumin (BSA) solutions. We obtained experimentally the limit of detection (LOD) of glycerol concentration, 0.001% (volume ratio), corresponding to the resolvable index resolution of similar to 1.02 x 10(-6) RIU (refractive index unit). The presented sensors also exhibited reasonably good reproducibility. In BSA detection, the sensor device response was sensitive to change in the refractive indices not only of liquid bulk but also of layers just above the sensing surface with higher sensitivity, providing the LOD experimentally as similar to 3.7 ng/mL (mass coverage of similar to 30 pg/mm(2)). A theoretical model was also presented to invoke both mode mismatch modulation and evanescent field absorption for understanding of the transmission change, offering a theoretical background for designing the sensor head structure for a given analyte. Interestingly, the device sensing length played little role in the important sensor characteristics such as sensitivity, unlike most of the waveguide-based sensors. This unraveled the possibility of realizing a highly simple structured label-free sensor for point-of-care testing in a real-time manner via an optical waveguide with liquid cladding. This required neither metal nor dielectric coating but still produced sensitivity comparable to those of other types of label-free sensors such as plasmonic fiber ones.</P>

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼