RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • COPOLYMER-MEDIATED FABRICATION OF VERSATILE ELECTRO-ACTIVE AND INFLAMMATION ATTENUATING SUBSTRATES FOR BIOLOGICAL INTERROGATION

        EDWARD K. CHOW,BENJAMIN CHU,GENHONG CHENG,YU-CHONG TAI,ERIK PIERSTORFF,DEAN HO 성균관대학교(자연과학캠퍼스) 성균나노과학기술원 2007 NANO Vol.2 No.6

        Serving as platforms for both cellular interrogation as well as biomembrane mimicry, biotic–abiotic functionalized materials, such as block copolymeric membranes, offer the opportunity for tailored biology, where specific embedded functionalities can be rapidly engineered, on demand, without the need for genetic processing. These versatile materials enable rapid, thin film deposition of a plethora of biologically-relevant materials at the air–water interface given their amphiphilic properties, meaning that they possess alternating hydrophilic and hydrophobic components. This property confers to these materials the ability to be transferred to a wide range of substrates and materials, further enhancing their interfacial versatility. In addition, their biologically-inert, and tunable, thickness-dependent insulating properties serve as ideal bio-active substrates while maintaining the functionality of the integrated molecule (e.g., protein, effector molecule, etc.). Here, we report the application of a polyethyleneoxide–polymethylmethacrylate (PEO–PMMA) diblock and polymethyloxazoline–polydimethylsiloxane–polymethyloxazoline (PMOXA–PDMS–PMOXA) triblock copolymers as molecular anchors for tethering a broad spectrum of materials. These include carbon nanotubes for the fabrication of bioelectrodes to measure cytochrome c-mediated oxidation-reduction, as well as the anti-inflammatory molecule, dexamethasone, for the suppression of lipopolysaccharide (LPS)-induced inflammation in murine macrophages. As such, this work demonstrates the versatility, and broad applicability and impact of this platform approach towards the fabrication of multifunctional arrays of biologically-active surfaces for experimentation ranging from bio-electroactivity to studies of cellular immunity.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼