RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • Generation of mtDNA Homoplasmic Cloned Lambs

        Lee, Joon-Hee,Peters, Amy,Fisher, Pat,Bowles, Emma J.,St. John, Justin C.,Campbell, Keith H. S. Mary Ann Liebert 2010 Cellular reprogramming Vol.12 No.3

        <P>Abstract Generally in mammals, individual animals contain only maternally inherited mitochondrial DNA (mtDNA), as paternal (sperm)-derived mitochondria are usually eliminated during early development. Somatic cell nuclear transfer (SCNT) bypasses the normal routes of mtDNA inheritance and introduces not only a different nuclear genome into the recipient cytoplast (in general an enucleated oocyte) but also somatic mitochondria. Differences in mtDNA genotype between recipient oocytes and potential mtDNA heteroplasmy due to persistence and replication of somatic mtDNA means that offspring generated by SCNT are not true clones. However, more importantly, the consequences of the presence of somatic mtDNA, mtDNA heteroplasmy, or possible incompatibility between nuclear and mtDNA genotypes on subsequent development and function of the embryo, fetus and offspring are unknown. Following sexual reproduction, mitochondrial function requires the biparental control of maternally inherited mtDNA, whereas following SCNT incompatibility between the recipient cell mitochondrial and transplanted nuclear genomes, or mtDNA heteroplasmy, may result in energy imbalance and initiate the onset of mtDNA-type disease, or disruption of normal developmental events. To remove the potentially adverse effects of somatic mtDNA following SCNT we have previously produced embryos using donor cells depleted to residual levels of mtDNA (mtDNA(R)). We now report that these cells support development to term and produced live lambs in which no donor somatic mtDNA was detected, the lambs being homoplasmic for recipient oocyte DNA.</P>

      • Caffeine treatment of ovine cytoplasts regulates gene expression and foetal development of embryos produced by somatic cell nuclear transfer

        Choi, Inchul,Lee, Joon-Hee,Fisher, Pat,Campbell, Keith H.S. Wiley Subscription Services, Inc., A Wiley Company 2010 Molecular reproduction and development Vol.77 No.10

        <P>Treatment of ovine oocytes during the latter stages of maturation in vitro with caffeine, a phosphodiesterase inhibitor, can increase the activities of maturation promoting factor and mitogen-activated protein kinases at metaphase II. When used as cytoplast recipients for somatic cell nuclear transfer (NT), caffeine-treated oocytes produced blastocysts with increased cell numbers. The objectives of these studies were to determine the effects of caffeine treatment on the expression profile of genes involved in early embryonic development and whether induction or maintenance of pregnancy was subsequently altered. No differences in overall expression patterns were observed between fertilised, caffeine-treated fertilised and parthenogenetic embryos. In control NT embryos, altered levels of gene expression were found for OCT4, five genes regulated by OCT4 (H2AF.Z, NANOG, SOX2, FGF4 and INFT) and the heat-shock response genes (HSP27 and HSP70.1). Levels of OCT4, H2AF.Z, NANOG, HSP 27 and FGF4 decreased, while those of INFT, HSP70.1 and SOX2 increased. In contrast, expression levels of these genes in caffeine-treated NT embryos were similar to those in fertilised controls. Following transfer to surrogate recipients no differences were observed in the frequency of pregnancy; however, ewes receiving caffeine-treated embryos maintained pregnancies for longer periods and delivered a live lamb. Taken together, these results suggest that treatment of ovine oocytes with caffeine can affect gene expression and improve developmental competence. Further studies on the mechanisms behind this alteration of gene expression are required and will aid in understanding the molecular mechanisms involved in nuclear reprogramming. Mol. Reprod. Dev. 77:876–887, 2010. © 2010 Wiley-Liss, Inc.</P>

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼