RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Prediction of Water Quality Parameters Using ANFIS Optimized by Intelligence Algorithms (Case Study: Gorganrud River)

        Armin Azad,Hojat Karami,Saeed Farzin,Amir Saeedian,Hamed Kashi,Fatemeh Sayyahi 대한토목학회 2018 KSCE JOURNAL OF CIVIL ENGINEERING Vol.22 No.7

        Water quality management and control has high importance in planning and developing of water resources. This study investigatedapplication of Genetic Algorithm (GA), Ant Colony Optimization for Continuous Domains (ACOR) and Differential Evolution (DE)in improving the performance of adaptive neuro-fuzzy inference system (ANFIS), for evaluating the quality parameters ofGorganroud River water, such as Electrical Conductivity (EC), Sodium Absorption Ratio (SAR) and Total Hardness (TH). Accordingly, initially most suitable inputs were estimated for every model using sensitivity analysis and then all of the qualityparameters were predicted using mentioned models. Investigations showed that for predicting EC and TH in test stage, ANFIS-DEwith R2 values of 0.98 and 0.97, respectively and RMSE values of 73.03 and 49.55 and also MAPE values of 5.16 and 9.55,respectively were the most appropriate models. Also, ANFIS-DE and ANFIS-GA models had the best performance in prediction ofSAR (R2 = 0.95, 0.91; RMSE = 0.43, 0.37 and MAPE = 13.43, 13.72) in test stage. It is noteworthy that ANFIS showed the bestperformance in prediction of all mentioned water quality parameters in training stage. The results indicated the ability of mentionedalgorithms in improving the accuracy of ANFIS for predicting the quality parameters of river water.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼