RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Energetic walking gaits studied by a simple actuated inverted pendulum model

        Kang An,Yingyuan Liu,Yiran Li,Yunxia Zhang,Chengju Liu 대한기계학회 2018 JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY Vol.32 No.5

        The mechanical structure and the joint torques configuration are the important parts in the biped robot design. Meanwhile, different walking speed and step length should be chosen to achieve efficient gait according to different need of walking environment. Therefore, this paper investigates the energetic walking gaits using a simple actuated inverted pendulum model. Joint torques and push-off impulse are both added in the model. The walking gaits with different joint torques configuration and with different combination of walking speeds and step lengths are analyzed. The results show that hip velocity direction is changed by the push-off impulse just before the heelstrike, which reduces the energy consumption of each step. The walking gait with minimal energy consumption is the walking pattern only with push-off, the energy cost of which is 1/4 of the walking pattern only with joint torque during the swing phase. The cost of transport (COT) and the push-off impulse of the walking gait is increasing with the increase of walking speed and step length. Using same value of push-off impulse, the walking with long step length and slow speed is more efficient. The paper can provide suggestions for designing advanced legged robot systems with high energy efficiency and various gaits. For example, the consideration of push-off mechanism can be used in the biped robots design.

      • KCI등재

        Efficient walking gait with different speed and step length: Gait strategies discovered by dynamic optimization of a biped model

        Kang An,Chuanjiang Li,Zuhua Fang,Chengju Liu 대한기계학회 2017 JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY Vol.31 No.4

        The selection of walking gait for biped robots depends on the requirement of walking environment. Walking with different situations of walking speeds and step lengths, the gait strategies are different. In this paper, we study the energetically optimal walking gait strategies under the different walking situations using a simple biped walking model with dynamic optimization method. The walking model with mass legs and three actuations, which is designed upon Srinivasan’s model, is built for the purpose of the paper. Dynamic optimization is used for a free search with minimal constraints. The analysis of the COT of the optimal gaits and its two components COT swing and COT push-off show that the COT is increasing with the increase of the walking speed. For a certain walking speed, the minimal value of COT can be found with a corresponding step length. According to the joint torques output strategies, we discover four gait patterns including two typical walking gaits patterns that the hip torque impulse is only at the beginning or at the end of the swing phase, respectively, and two other new transitional gait patterns.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼