RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Functional mechanisms for diabetic nephropathy-associated genetic variants

        Hong Xu,Chengxin Gong,Yonghu Xu,Yongfang Fan,Xingzi Liu,Chaopeng Xiong,Luling He,Changle Liu,Shenqiang Rao,Wen Xiao,Lu Ding,Lan Tang,Fangfang Hu,Mengqi Xiong,Mei Yang,Shangdong Liang 한국유전학회 2016 Genes & Genomics Vol.38 No.7

        Diabetic nephropathy (DN) is one of the major complications of diabetes. A tremendous amount of genetic variations have been identified to be associated with DN. However, most of them only generate from statistical associations at the DNA level, generally without direct functional evidence regarding their association mechanisms underlying DN. Based on the publicly available datasets and resources, this study performed integrative analyses (expression quantitative trait loci analysis, differential gene expression analysis and functional prediction analysis) to detect the molecular functional mechanisms underlying the associations for DN. Among 150 selected (P\E-4) genetic associations that were archived in the public databases, two single nucleotide polymorphisms (SNPs) (rs3135377 and rs9469220) have been found to act as cis-effect regulators of the ‘‘identified’’ gene (HLADRA and HLA-DRB1). These eQTL genes have differential expression signals in the DN-associated cell groups. These SNPs were predicted as regulatory sites by utilizing online prediction tools. Our data suggest potential mechanistic links underlying the association between DN and two identified SNPs. These results could help us to have a deeper understanding of the functional relevance of genetic variants with susceptibility to DN, which is useful for pursuit of in-depth validation studies to dissect their involvements and molecular functional mechanisms in DN.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼