RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCIESCOPUS

        Identification of eighteen flutter derivatives of an airfoil and a bridge deck

        Chowdhury, Arindam Gan,Sarkar, Partha P. Techno-Press 2004 Wind and Structures, An International Journal (WAS Vol.7 No.3

        Wind tunnel experiments are often performed for the identification of aeroelastic parameters known as flutter derivatives that are necessary for the prediction of flutter instability for flexible structures. Experimental determination of all the eighteen flutter derivatives for a section model facilitates complete understanding of the physical mechanism of flutter. However, work in the field of identifying all the eighteen flutter derivatives using section models with all three degree-of-freedom (DOF) has been limited. In the current paper, all eighteen flutter derivatives for a streamlined bridge deck and an airfoil section model were identified by using a new system identification technique, namely, Iterative Least Squares (ILS) approach. Flutter derivatives of the current bridge and the Tsurumi bridge are compared. Flutter derivatives related to the lateral DOF have been emphasized. Pseudo-steady theory for predicting some of the flutter derivatives is verified by comparing with experimental data. The three-DOF suspension system and the electromagnetic system for providing the initial conditions for free-vibration of the section model are also discussed.

      • SCIESCOPUS

        Investigation of wind-induced dynamic and aeroelastic effects on variable message signs

        Meyer, Debbie,Chowdhury, Arindam Gan,Irwin, Peter Techno-Press 2015 Wind and Structures, An International Journal (WAS Vol.20 No.6

        Tests were conducted at the Florida International University (FIU) Wall of Wind (WOW) to investigate the susceptibility of Variable Message Signs (VMS) to wind induced vibrations due to vortex shedding and galloping instability. Large scale VMS models were tested in turbulence representative of the high frequency end of the spectrum in a simulated suburban atmospheric boundary layer. Data was measured for the $0^{\circ}$ and $45^{\circ}$ horizontal wind approach directions and vertical attack angles ranging from $-4.5^{\circ}$ to $+4.5^{\circ}$. Analysis of the power spectrum of the fluctuating lift indicated that vertical vortex oscillations could be significant for VMS with a large depth ratio attached to a structure with a low natural frequency. Analysis of the galloping test data indicated that VMS with large depth ratios, greater than about 0.5, and low natural frequency could also be subject to galloping instability.

      • SCIESCOPUS

        Development of devices and methods for simulation of hurricane winds in a full-scale testing facility

        Huang, Peng,Chowdhury, Arindam Gan,Bitsuamlak, Girma,Liu, Roy Techno-Press 2009 Wind and Structures, An International Journal (WAS Vol.12 No.2

        The International Hurricane Research Center (IHRC) at Florida International University (FIU) is pursuing research to better understand hurricane-induced effects on residential buildings and other structures through full-scale aerodynamic and destructive testing. The full-scale 6-fan Wall of Wind (WoW) testing apparatus, measuring 4.9 m tall by 7.3 m wide, is capable of generating hurricane-force winds. To achieve windstorm simulation capabilities it is necessary to reproduce mean and turbulence characteristics of hurricane wind flows. Without devices and methods developed to achieve target wind flows, the full-scale WoW simulations were found to be unsatisfactory. To develop such devices and methods efficiently, a small-scale (1:8) model of the WoW was built, for which simulation devices were easier and faster to install and change, and running costs were greatly reduced. The application of such devices, and the use of quasiperiodic fluctuating waveforms to run the WoW fan engines, were found to greatly influence and improve the turbulence characteristics of the 1:8 scale WoW flow. Reasonable reproductions of wind flows with specified characteristics were then achieved by applying to the full-scale WoW the devices and methods found to be effective for the 1:8 scale WoW model.

      • KCI등재

        Investigation of wind-induced dynamic and aeroelastic effects on variable message signs

        Debbie Meyer,Arindam Gan Chowdhury,Peter Irwin 한국풍공학회 2015 Wind and Structures, An International Journal (WAS Vol.20 No.6

        Tests were conducted at the Florida International University (FIU) Wall of Wind (WOW) to investigate the susceptibility of Variable Message Signs (VMS) to wind induced vibrations due to vortex shedding and galloping instability. Large scale VMS models were tested in turbulence representative of the high frequency end of the spectrum in a simulated suburban atmospheric boundary layer. Data was measured for the 0° and 45° horizontal wind approach directions and vertical attack angles ranging from -4.5° to +4.5°. Analysis of the power spectrum of the fluctuating lift indicated that vertical vortex oscillations could be significant for VMS with a large depth ratio attached to a structure with a low natural frequency. Analysis of the galloping test data indicated that VMS with large depth ratios, greater than about 0.5, and low natural frequency could also be subject to galloping instability.

      • KCI등재

        Development of devices and methods for simulation of hurricane winds in a full-scale testing facility

        Peng Huang,Arindam Gan Chowdhury,Girma Bitsuamlak,Roy Liu 한국풍공학회 2009 Wind and Structures, An International Journal (WAS Vol.12 No.2

        The International Hurricane Research Center (IHRC) at Florida International University (FIU) is pursuing research to better understand hurricane-induced effects on residential buildings and other structures through full-scale aerodynamic and destructive testing. The full-scale 6-fan Wall of Wind (WoW) testing apparatus, measuring 4.9 m tall by 7.3 m wide, is capable of generating hurricane-force winds. To achieve windstorm simulation capabilities it is necessary to reproduce mean and turbulence characteristics of hurricane wind flows. Without devices and methods developed to achieve target wind flows, the full-scale WoW simulations were found to be unsatisfactory. To develop such devices and methods efficiently, a small-scale (1:8) model of the WoW was built, for which simulation devices were easier and faster to install and change, and running costs were greatly reduced. The application of such devices, and the use of quasiperiodic fluctuating waveforms to run the WoW fan engines, were found to greatly influence and improve the turbulence characteristics of the 1:8 scale WoW flow. Reasonable reproductions of wind flows with specified characteristics were then achieved by applying to the full-scale WoW the devices and methods found to be effective for the 1:8 scale WoW model.

      • KCI등재

        Wind profile management and blockage assessment for a new 12-fan Wall of Wind facility at FIU

        Aly Mousaad Aly,Arindam Gan Chowdhury,Girma Bitsuamlak 한국풍공학회 2011 Wind and Structures, An International Journal (WAS Vol.14 No.4

        Researchers at the International Hurricane Research Center (IHRC), Florida International University (FIU), are working in stages on the construction of a large state-of-the-art Wall of Wind (WoW) facility to support research in the area of Wind Engineering. In this paper, the challenges of simulating hurricane winds for the WoW are presented and investigated based on a scale model study. Three wind profiles were simulated using airfoils, and/or adjustable planks mechanism with and without grids. Evaluations of flow characteristics were performed in order to enhance the WoW’s flow simulation capabilities. Characteristics of the simulated wind fields are compared to the results obtained from a study using computational fluid dynamics (CFD) and also validated via pressure measurements on small-scale models of the Silsoe cube building. Optimal scale of the test model and its optimal distance from the WoW contraction exit are determined – which are two important aspects for testing using an open jet facility such as the WoW. The main objective of this study is to further the understanding of the WoW capabilities and the characteristics of its test section by means of intensive tests and validations at small scale in order to apply this knowledge to the design of the full-scale WoW and for future wind engineering testing.

      • SCIESCOPUS

        Wind profile management and blockage assessment for a new 12-fan Wall of Wind facility at FIU

        Aly, Aly Mousaad,Chowdhury, Arindam Gan,Bitsuamlak, Girma Techno-Press 2011 Wind and Structures, An International Journal (WAS Vol.14 No.4

        Researchers at the International Hurricane Research Center (IHRC), Florida International University (FIU), are working in stages on the construction of a large state-of-the-art Wall of Wind (WoW) facility to support research in the area of Wind Engineering. In this paper, the challenges of simulating hurricane winds for the WoW are presented and investigated based on a scale model study. Three wind profiles were simulated using airfoils, and/or adjustable planks mechanism with and without grids. Evaluations of flow characteristics were performed in order to enhance the WoW's flow simulation capabilities. Characteristics of the simulated wind fields are compared to the results obtained from a study using computational fluid dynamics (CFD) and also validated via pressure measurements on small-scale models of the Silsoe cube building. Optimal scale of the test model and its optimal distance from the WoW contraction exit are determined - which are two important aspects for testing using an open jet facility such as the WoW. The main objective of this study is to further the understanding of the WoW capabilities and the characteristics of its test section by means of intensive tests and validations at small scale in order to apply this knowledge to the design of the full-scale WoW and for future wind engineering testing.

      • KCI등재

        A proposed technique for determining aerodynamic pressures on residential homes

        Tuan-Chun Fu,Arindam Gan Chowdhury,Aly Mousaad Aly,Girma Bitsuamlak,DongHun Yeo,Emil Simiu 한국풍공학회 2012 Wind and Structures, An International Journal (WAS Vol.15 No.1

        Wind loads on low-rise buildings in general and residential homes in particular can differ significantly depending upon the laboratory in which they were measured. The differences are due in large part to inadequate simulations of the low-frequency content of atmospheric velocity fluctuations in the laboratory and to the small scale of the models used for the measurements. The imperfect spatial coherence of the low frequency velocity fluctuations results in reductions of the overall wind effects with respect to the case of perfectly coherent flows. For large buildings those reductions are significant. However, for buildings with sufficiently small dimensions (e.g., residential homes) the reductions are relatively small. A technique is proposed for simulating the effect of low-frequency flow fluctuations on such buildings more effectively from the point of view of testing accuracy and repeatability than is currently the case. Experimental results are presented that validate the proposed technique. The technique eliminates a major cause of discrepancies among measurements conducted in different laboratories. In addition, the technique allows the use of considerably larger model scales than are possible in conventional testing. This makes it possible to model architectural details, and improves Reynolds number similarity. The technique is applicable to wind tunnels and large scale open jet facilities, and can help to standardize flow simulations for testing residential homes as well as significantly improving testing accuracy and repeatability. The work reported in this paper is a first step in developing the proposed technique. Additional tests are planned to further refine the technique and test the range of its applicability.

      • SCIESCOPUS

        Partial turbulence simulation and aerodynamic pressures validation for an open-jet testing facility

        Fu, Tuan-Chun,Chowdhury, Arindam Gan,Bitsuamlak, Girma,Baheru, Thomas Techno-Press 2014 Wind and Structures, An International Journal (WAS Vol.19 No.1

        This paper describes partial turbulence simulation and validation of the aerodynamic pressures on building models for an open-jet small-scale 12-Fan Wall of Wind (WOW) facility against their counterparts in a boundary-layer wind tunnel. The wind characteristics pertained to the Atmospheric Boundary Layer (ABL) mean wind speed profile and turbulent fluctuations simulated in the facility. Both in the wind tunnel and the small-scale 12-Fan WOW these wind characteristics were produced by using spires and roughness elements. It is emphasized in the paper that proper spectral density parameterization is required to simulate turbulent fluctuations correctly. Partial turbulence considering only high frequency part of the turbulent fluctuations spectrum was simulated in the small-scale 12-Fan WOW. For the validation of aerodynamic pressures a series of tests were conducted in both wind tunnel and the small-scale 12-fan WOW facilities on low-rise buildings including two gable roof and two hip roof buildings with two different slopes. Testing was performed to investigate the mean and peak pressure coefficients at various locations on the roofs including near the corners, edges, ridge and hip lines. The pressure coefficients comparisons showed that open-jet testing facility flows with partial simulations of ABL spectrum are capable of inducing pressures on low-rise buildings that reasonably agree with their boundary-layer wind tunnel counterparts.

      • KCI등재

        Partial turbulence simulation and aerodynamic pressures validation for an open-jet testing facility

        Tuan-Chun Fu,Arindam Gan Chowdhury,Girma Bitsuamlak,Thomas Baheru 한국풍공학회 2014 Wind and Structures, An International Journal (WAS Vol.19 No.1

        This paper describes partial turbulence simulation and validation of the aerodynamic pressures on building models for an open-jet small-scale 12-Fan Wall of Wind (WOW) facility against their counterparts in a boundary-layer wind tunnel. The wind characteristics pertained to the Atmospheric Boundary Layer (ABL) mean wind speed profile and turbulent fluctuations simulated in the facility. Both in the wind tunnel and the small-scale 12-Fan WOW these wind characteristics were produced by using spires and roughness elements. It is emphasized in the paper that proper spectral density parameterization is required to simulate turbulent fluctuations correctly. Partial turbulence considering only high frequency part of the turbulent fluctuations spectrum was simulated in the small-scale 12-Fan WOW. For the validation of aerodynamic pressures a series of tests were conducted in both wind tunnel and the small-scale 12-fan WOW facilities on low-rise buildings including two gable roof and two hip roof buildings with two different slopes. Testing was performed to investigate the mean and peak pressure coefficients at various locations on the roofs including near the corners, edges, ridge and hip lines. The pressure coefficients comparisons showed that open-jet testing facility flows with partial simulations of ABL spectrum are capable of inducing pressures on low-rise buildings that reasonably agree with their boundary-layer wind tunnel counterparts.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼