RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
          펼치기
        • 주제분류
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Proteomic Analysis of the GacA Response Regulator in Pseudomonas chlororaphis O6

        Anderson, Anne J.,Kim, Young Cheol The Korean Society of Plant Pathology 2018 식물병연구 Vol.24 No.2

        The GacS/GacA system in the root colonizer Pseudomonas chlororaphis O6 is a key regulatory system of many traits relevant to the plant probiotic nature of this bacterium. The work in this paper elucidates proteins using proteomics approach in P. chlororaphis O6 under the control of the cytoplasmic regulatory protein, GacA. A gacA mutant of P. chlororaphis O6 showed loss in production of phenazines, acyl homoserine lactones, hydrogen cyanide, and protease, changes that were associated with reduced in vitro antifungal activity against plant fungal pathogens. Production of iron-chelating siderophore was significantly enhanced in the gacA mutant, also paralleling changes in a gacS mutant. However, proteomic analysis revealed proteins (13 downregulated and 7 upregulated proteins in the mutant compared to parental strain) under GacA control that were not apparent by a proteomic study of a gacS mutant. The putative identity of the downregulated proteins suggested that a gacA mutant would have altered transport potentials. Notable would be a predicted loss of type-VI secretion and PEP-dependent transport. Study of mutants of these GacA-regulated proteins will indicate further the features required for probiotic potential in this rhizobacterium.

      • KCI등재

        The Power of Being Small: Nanosized Products for Agriculture

        ANNE J. ANDERSON 한국식물병리학회 2018 식물병연구 Vol.24 No.2

        Certain agrochemicals may be tuned for increased effectiveness when downsized to nanoparticles (NPs), where one dimension is less than 100 nm. The NPs may function as fertilizers, pesticides and products to improve plant health through seed priming, growth promotion, and induction of systemic tolerance to stress. Formulations will allow targeted applications with timed release, reducing waste and pollution when compared to treatments with bulk-size products. The NPs may be a single component, such as nano-ZnO as a fertilizer, or be composites of compatible materials, for example where N, P, and K plus micronutrients are available. The active materials could be loaded into porous carriers or tethered to base nanostructures. Coatings could include such natural products alginate, chitosan, zein, or silica. Certain NPs are taken up and transported in the plant’s phloem and xylem so systemic effects are feasible. Timed and targeted release of the active product could be achieved in response to changes in pH or availability of ligands within the plant or the rhizosphere. Global research has revealed the many potentials offered by NP formulations to aid sustainability in agriculture. Current work will provide information needed by regulatory agencies to assess their safety in the agricultural setting.

      • KCI등재

        The Gac/Rsm Signaling Pathway of a Biocontrol Bacterium, Pseudomonas chlororaphis O6

        Anderson, Anne J.,Kang, Beom Ryong,Kim, Young Cheol The Korean Society of Plant Pathology 2017 식물병연구 Vol.23 No.3

        Pseudomonas chlororaphis O6, isolated from the roots of dryland, field-grown commercial wheat in the USA, enhances plant health and therefore it is used in agriculture as a biofertilizer and biocontrol agent. The metabolites produced by this pseudomonad stimulate plant growth through direct antagonism of pathogens and by inducing systemic resistance in the plant. Studies upon P. chlororaphis O6 identify the pathways through which defined bacterial metabolites generate protection against pathogenic microbes, insects, and nematodes. P. chlororaphis O6 also triggers plant resistance to drought and salinity stresses. The beneficial determinants are produced from bacterial cells as they form biofilms during root colonization. Molecular control these processes in P. chlororaphis O6 involves the global regulatory Gac/Rsm signaling cascade with cross-talk between other global regulatory pathways. The Gac/Rsm regulon allows for coordinate phasing of expression of the genes that encode these beneficial traits among a community of cells. This review provides insights on the Gac/Rsm regulon in expression of beneficial traits of the P. chlororaphis O6 which can contribute to help yield enhancement and quality in agricultural production.

      • KCI등재

        The Gac/Rsm Signaling Pathway of a Biocontrol Bacterium, Pseudomonas chlororaphis O6

        ANNE J. ANDERSON,강범룡,김영철 한국식물병리학회 2017 식물병연구 Vol.23 No.3

        Pseudomonas chlororaphis O6, isolated from the roots of dryland, field-grown commercial wheat in the USA, enhances plant health and therefore it is used in agriculture as a biofertilizer and biocontrol agent. The metabolites produced by this pseudomonad stimulate plant growth through direct antagonism of pathogens and by inducing systemic resistance in the plant. Studies upon P. chlororaphis O6 identify the pathways through which defined bacterial metabolites generate protection against pathogenic microbes, insects, and nematodes. P. chlororaphis O6 also triggers plant resistance to drought and salinity stresses. The beneficial determinants are produced from bacterial cells as they form biofilms during root colonization. Molecular control these processes in P. chlororaphis O6 involves the global regulatory Gac/Rsm signaling cascade with cross-talk between other global regulatory pathways. The Gac/Rsm regulon allows for coordinate phasing of expression of the genes that encode these beneficial traits among a community of cells. This review provides insights on the Gac/Rsm regulon in expression of beneficial traits of the P. chlororaphis O6 which can contribute to help yield enhancement and quality in agricultural production.

      • KCI등재

        The Power of Being Small: Nanosized Products for Agriculture

        Anderson, Anne J. The Korean Society of Plant Pathology 2018 식물병연구 Vol.24 No.2

        Certain agrochemicals may be tuned for increased effectiveness when downsized to nanoparticles (NPs), where one dimension is less than 100 nm. The NPs may function as fertilizers, pesticides and products to improve plant health through seed priming, growth promotion, and induction of systemic tolerance to stress. Formulations will allow targeted applications with timed release, reducing waste and pollution when compared to treatments with bulk-size products. The NPs may be a single component, such as nano-ZnO as a fertilizer, or be composites of compatible materials, for example where N, P, and K plus micronutrients are available. The active materials could be loaded into porous carriers or tethered to base nanostructures. Coatings could include such natural products alginate, chitosan, zein, or silica. Certain NPs are taken up and transported in the plant's phloem and xylem so systemic effects are feasible. Timed and targeted release of the active product could be achieved in response to changes in pH or availability of ligands within the plant or the rhizosphere. Global research has revealed the many potentials offered by NP formulations to aid sustainability in agriculture. Current work will provide information needed by regulatory agencies to assess their safety in the agricultural setting.

      • KCI등재

        The Plant-Stress Metabolites, Hexanoic Aacid and Melatonin, Are Potential “Vaccines” for Plant Health Promotion

        Anne J. Anderson,Young Cheol Kim 한국식물병리학회 2021 Plant Pathology Journal Vol.37 No.5

        A plethora of compounds stimulate protective mecha- nisms in plants against microbial pathogens and abiotic stresses. Some defense activators are synthetic com- pounds and trigger responses only in certain protective pathways, such as activation of defenses under regula- tion by the plant regulator, salicylic acid (SA). This review discusses the potential of naturally occurring plant metabolites as primers for defense responses in the plant. The production of the metabolites, hexanoic acid and melatonin, in plants means they are consumed when plants are eaten as foods. Both metabolites prime stronger and more rapid activation of plant defense upon subsequent stress. Because these metabolites trig- ger protective measures in the plant they can be considered as “vaccines” to promote plant vigor. Hexanoic acid and melatonin instigate systemic changes in plant metabolism associated with both of the major defense pathways, those regulated by SA- and jasmonic acid (JA). These two pathways are well studied because of their induction by different microbial triggers: necrosis-causing microbial pathogens induce the SA pathway whereas colonization by beneficial microbes stimulates the JA pathway. The plant’s responses to the two me- tabolites, however, are not identical with a major difference being a characterized growth response with melatonin but not hexanoic acid. As primers for plant defense, hexanoic acid and melatonin have the potential to be successfully integrated into vaccination-like strategies to protect plants against diseases and abiotic stresses that do not involve man-made chemicals.

      • KCI등재

        Proteomic Analysis of the GacA Response Regulator in Pseudomonas chlororaphis O6

        ANNE J. ANDERSON,김영철 한국식물병리학회 2018 식물병연구 Vol.24 No.2

        The GacS/GacA system in the root colonizer Pseudomonas chlororaphis O6 is a key regulatory system of many traits relevant to the plant probiotic nature of this bacterium. The work in this paper elucidates proteins using proteomics approach in P. chlororaphis O6 under the control of the cytoplasmic regulatory protein, GacA. A gacA mutant of P. chlororaphis O6 showed loss in production of phenazines, acyl homoserine lactones, hydrogen cyanide, and protease, changes that were associated with reduced in vitro antifungal activity against plant fungal pathogens. Production of iron-chelating siderophore was significantly enhanced in the gacA mutant, also paralleling changes in a gacS mutant. However, proteomic analysis revealed proteins (13 downregulated and 7 upregulated proteins in the mutant compared to parental strain) under GacA control that were not apparent by a proteomic study of a gacS mutant. The putative identity of the downregulated proteins suggested that a gacA mutant would have altered transport potentials. Notable would be a predicted loss of type-VI secretion and PEP-dependent transport. Study of mutants of these GacA-regulated proteins will indicate further the features required for probiotic potential in this rhizobacterium.

      • KCI등재

        Hydrogen Cyanide Produced by Pseudomonas chlororaphis O6 Exhibits Nematicidal Activity against Meloidogyne hapla

        강범룡,Anne J. Anderson,김영철 한국식물병리학회 2018 Plant Pathology Journal Vol.34 No.1

        Root-knot nematodes (Meloidogyne spp.) are parasites that attack many field crops and orchard trees, and affect both the quantity and quality of the products. A root-colonizing bacterium, Pseudomonas chlororaphis O6, possesses beneficial traits including strong nematicidal activity. To determine the molecular mechanisms involved in the nematicidal activity of P. chlororaphis O6, we constructed two mutants; one lacking hydrogen cyanide production, and a second lacking an insecticidal toxin, FitD. Root drenching with wild-type P. chlororaphis O6 cells caused juvenile mortality in vitro and in planta. Efficacy was not altered in the fitD mutant compared to the wild-type but was reduced in both bioassays for the mutant lacking hydrogen cyanide production. The reduced number of galls on tomato plants caused by the wild-type strain was comparable to that of a standard chemical nematicide. These findings suggest that hydrogen cyanide-producing root colonizers, such as P. chlororaphis O6, could be formulated as “green” nematicides that are compatible with many crops and offer agricultural sustainability.

      • KCI등재

        Biocontrol Efficacy of Formulated Pseudomonas chlororaphis O6 against Plant Diseases and Root-Knot Nematodes

        남효송,Anne J. Anderson,김영철 한국식물병리학회 2018 Plant Pathology Journal Vol.34 No.3

        Commercial biocontrol of microbial plant diseases and plant pests, such as nematodes, requires field-effective formulations. The isolate Pseudomonas chlororaphis O6 is a Gram-negative bacterium that controls microbial plant pathogens both directly and indirectly. This bacterium also has nematocidal activity. In this study, we report on the efficacy of a wettable powder-type formulation of P. chlororaphis O6. Culturable bacteria in the formulated product were retained at above 1 × 108 colony forming units/g after storage of the powder at 25 oC for six months. Foliar application of the diluted formulated product controlled leaf blight and gray mold in tomato. The product also displayed preventative and curative controls for root-knot nematode (Meloidogyne spp.) in tomato. Under laboratory conditions and for commercially grown melon, the control was at levels comparable to that of a standard commercial chemical nematicide. The results indicated that the wettable powder formulation product of P. chlororaphis O6 can be used for control of plant microbial pathogens and root-knot nematodes.

      • KCI등재

        Extracellular Polymeric Substances of Pseudomonas chlororaphis O6 Induce Systemic Drought Tolerance in Plants

        Cho, Song Mi,Anderson, Anne J.,Kim, Young Cheol The Korean Society of Plant Pathology 2018 식물병연구 Vol.24 No.3

        Pseudomonas chlororaphis O6 induces systemic tolerance in plants against drought stress. A volatile, 2R, 3R-butanediol, produced by the bacterium causes partial stomatal closure, thus, limiting water loss from the plant. In this study, we report that applications of extracellular polymeric substances (EPS) from P. chlororaphis O6 to epidermal peels of leaves of Arabidopsis thaliana also reduce the size of stomatal openings. Growth of A. thaliana seedlings with applications of the EPS from P. chlororaphis O6 reduced the extent of wilting when water was withheld from the plants. Fluorescence measurements showed photosystem II was protected in the A. thaliana leaves in the water stressed EPS-exposed plants. These findings indicate that P. chlororaphis O6 has redundancy in traits associated with induction of mechanisms to limit water stress in plants.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼