RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 음성지원유무
        • 원문제공처
          펼치기
        • 등재정보
          펼치기
        • 학술지명
          펼치기
        • 주제분류
          펼치기
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        비고용 V-Cu계 MA합금의 중성자 및 X선 회절에 의한 상분석

        이충효,조재문,이상진,김지순,Lee Chung-Hyo,Cho Jae-Moon,Lee Sang-Jin,Kim Ji-Soon 한국재료학회 2004 한국재료학회지 Vol.14 No.5

        The mechanical alloying (MA) effect in immiscible V-Cu system with positive heat of mixing was studied by not only the neutron and X-ray diffraction but also the analysis of DSC spectra. The total energy, ΔHt accumulated during MA for the mixture of $V_{50}$ $Cu_{50}$ / powders increased with milling time and approached the saturation value of 14 kJ/mol after 120 h of milling. It can be seen that the free energy difference between the amorphous phase and the pure V and Cu powders with an atomic ratio 5:5 is estimated to be 11 kJ/mol by Miedema et al. This is thermodynamically taken as one of the evidences for the amorphization. The structural changes of V-Cu MA powders were characterized by the X-ray diffraction and neutron diffraction. We take a full advantage of a negligibly small scattering length of the V atom in the neutron diffraction measurement. The neutron diffraction data definitely indicate that the amorphization proceeds gradually but incompletely even after 120 h of MA and bcc-Cu Bragg peaks appears after 60 h of MA.

      • KCI등재

        기계적 합금화법에 의한 영구자석용 $Sm_2Fe_{17}N_x$ 화합물의 제조

        이충효,김명근,석명진,김지순,윤석길,권영순 한국분말야금학회 2001 한국분말재료학회지 (KPMI) Vol.8 No.1

        Mechanical alloying technique was applied to prepare hard magnetic $Sm_2Fe_{17}N_x$ compound powders. Staring from pure Fe and Sm powders, the formation process of hard magnetic $Sm_2Fe_{17}N_x$ phase by mechanical alloying and subsequent solid state reaction was studied. As milled powders were found to consist of Sm-Fe amorphous and $\alpha$-Fe phases in all compositions of $Sm_xFe_{100-x}$(x = 11, 13, 15, 17). The effects of starting composition on the formation of $Sm_2Fe_{17}$ intermetallic compound was investigated by heat treatment of mechanically-alloyed powders. When Sm content was 15 at.%, heat-treated powders consisted of nearly $Sm_2Fe_{17}$ single phase. For preparation of hard magnetic $Sm_2Fe_{17}N_x$ powders, additional nitriding treatment was performed under $N_2$ gas flow at 45$0^{\circ}C$. The increase in the coercivity and remanence was proportional to the nitrogen content which increased drastically at first and then increased gradually as the nitriding time was extended to 3 hours.

      • KCI등재

        기계적 합금화법에 의한 헤마타이트의 고상환원

        이충효,홍대석,이만승,권영순 한국분말야금학회 2002 한국분말재료학회지 (KPMI) Vol.9 No.1

        The efects of mechanical aloying conditions and the type of reducing agent on the solid state reductionof haematite $Fe_2O_3$ have been investigated at room temperature. Aluminium titanium zinc and copper were used as reducing agent. Nanocomposites of metal-oxide in which oxide particles with nano size were dispersed in Fe matrix were obtained by mechanical alloying of $Fe_2O_3$ with aluminium and titanium respectively However the reduction of $Fe_2O_3$ by coppe was not occurred Composite materials of iron with $Al_2O_3$ and $TiO_2$ were obtained from the system of $Fe_2O_3-Al$ and $Fe_2O_3-Ti$ after ball milling for 20 hrs and 30 hrs respectively. And the system of $Fe_2O_3-Zn$ resulted in the formationof FeO with ZnO after ball milling of 120 hrs. The final grain sizes of iron estimated by X-ray diffraction line-width measurement were in the ranges of 24~33 nm.

      • KCI등재

        기계적 합금화에 의한 Cr-N계 합금의 비정질화 과정

        이충효,이성희,이상진,권영순 한국분말야금학회 2003 한국분말재료학회지 (KPMI) Vol.10 No.4

        Mechanical alloying (MA) by high energy ball mill of Pure chromium Powders was carried out under the nitrogen gas atmosphere. Cr-N amorphous alloy powders have been produced through the solid-gas reaction subjected to MA. The atomic structure during amorphization process was observed by X-ray and neutron diffractions. An advantage of the neutron diffraction technique allows us to observe the local atomic structure surrounding a nitrogen atom. The coordination number of metal atoms around a N atom turns out to be 5.5 atoms. This implies that a nitrogen atom is located at both of centers of the tetrahedron and octahedron formed by metal atoms to stabilize an amorphous Cr-N structure. Also, we have revealed that a Cr-N amorphous alloy may produced from a mixture of pure Cr and Cr nitrides powders by solid-solid reaction during mechanical alloying.

      • KCI등재

        비고용 Cu<sub>30</sub>Mo<sub>70</sub>계 혼합분말의 기계적 합금화 효과

        이충효,이성희,이상진,권영순 한국분말야금학회 2003 한국분말재료학회지 (KPMI) Vol.10 No.1

        Lee et al. reported that a mixture of Cu and Ta, the combination of which is characterized by a positive heat of mixing, $\{Delta}H_{mix}$ of +2 kJ/㏖, can be amorphized by mechanical alloying(MA). It is our aim to investigate to what extent the MA is capable of producing a non-equilibrium phase with increasing the heat of mixing. The system chosen is the binary $Cu_{30}Mo_{70}$ with $\{Delta}H_{mix}$=+19 kJ/㏖. The mechanical alloying was carried out using a Fritsch P-5 planetary mill under Ar gas atmosphere. The vial and balls are made of Cu containing 1.8-2.0 wt.%Be to avoid contaminations arising mainly from Fe when steel balls and vial are used. The MA powders were characterized by the X-ray diffraction, EXAFS and thermal analysis. We conclude that two phase mixture of nanocrystalline fcc-Cu and bcc-Mo with grain size of 10 nm is formed by the ball-milling for a 3:7 mixture of pure Cu and Mo, the evidence for which has been deduced from the thermodynamic and structural analysis based on the DSC, X-ray diffraction and EXAFS spectra.

      • A study on neutron diffraction of amorphous Ni-Ta and Cu-Ta alloy powders prepared by mechanical alloying

        이충효,이진,Lee, Chung-Hyo,Lee, Jin The Korean Institute of Electrical and Electronic 1995 電氣電子材料學會誌 Vol.8 No.6

        기계적 합금화법에 의한 비정질화 과정을 Ni-Ta계 및 Cu-Ta계에 대하여 조사하였다. Ni-Ta합금계는 혼합엔탈피가 음이나, Cu-Ta계는 혼합엔탈피가 양인 열역학적으로 대조적인 합금계이다. 볼밀 중 발생하는 원자구조 변화를 중성자회절법을 이용하여 관찰하였다. 두 합금게에 있어서 기계적 합금화에 의한 비정질상이 생성되었다. 비정질 Cu-Ta합금의 local원자구조를 혼합엔탈피가 크게 음인 Ni-Ta계의 결과와 비교하였다. 그 결과, 대조적 특성을 가진 두 합금계임에도 불구하고 원자크기가 작은 Ni 및 Cu가 bcc Ta의 결정격자 속으로 우선적으로 침입함으로써 비정질화가 진행됨을 알 수 있었다.

      • KCI등재

        기계적 합금화법에 의한 ${\beta}-FeSi_2$ 분말 함성

        이충효,조재문,김환태,권영순 한국분말야금학회 2001 한국분말재료학회지 (KPMI) Vol.8 No.2

        The semiconducting ${\beta}-FeSi_2$ compound has been recognized as a thermoelectric material with excel-lent oxidation resistance and stable characteristics at elevated temperature. In the present work, we applied mechanical alloying(MA) technique to produce ${\beta}-FeSi_2$ compound using a mixture of elemental iron and silicon powders. The mechanical alloying was carried out using a Fritsch P-5 planetary mill under Ar gas atmosphere. The MA powders were characterized by the X-ray diffraction with Cu-K $\alpha$ radiation, thermal analysis and scanning electron microscopy. The single ${\beta}-FeSi_2$ phase has been obtained by mechanical alloying of $Fe_{33}Si_{67}$ mixture powders for 120 hrs or for 70 hrs coupled with the subsequent heat treatment up to $700^{\circ}C$. The grain size of ${\beta}-FeSi_2$ powders analyzed by Hall plot method was 44nm.

      • SCOPUSKCI등재

        기계적 합금화한 $\sigma$-VFe합금의 중성자 및 X선 회절에 의한 상분석

        이충효,조재문,이상진,심해섭,이창희,Lee, Chung-Hyo,Jo, Jae-Mun,Lee, Sang-Jin,Sim, Hae-Seop,Lee, Chang-Hui 한국재료학회 2001 한국재료학회지 Vol.11 No.8

        $\sigma$-VFe 금속간화합물에 대한 기계적 합금화(MA) 효과를 중성자 및 X선 회절법으로 조사하였다. MA 분말의 구조분석은 X선 회절(Cu-K$\alpha$) 린 중성자회절(HRPD, λ=1.835$\AA$)을 이용하여 행하였다. $\sigma$-VFe화합물의 MA시 큰 구조변화가 관찰되었으며, MA 60시간의 경우 Fe-Fe 훤자분포는 unit cell에 30개의 원자를 포함하고 있는 $\sigma$상의 tetragonal구조에서 $120^{\circ}C$이상에서 안정하게 존재하는 $\alpha$-(V,Fe) 고용체의 bcc 구조로 상변화함을 알 수 있었다. 또한 $\alpha$-VFe 화합물에 대한 중성자 및 X선 회절패턴의 비교분석을 행하였으며 그 결과 $\sigma$상이 가지는 화학적 규칙성에 기인하는 (101)과 (111) 회절 피크가 중성자 회절에서 뚜렷하게 관찰됨을 알 수 있었다. The mechanical alloying (MA) effect in $\sigma$-VFe intermetallic compound was studied by neutron and X-ray diffraction. The structure of MA $\sigma$-VFe powders were characterized by the X- ray diffraction with Cu- $K\alpha$ radiation and neutron diffraction with monochromatic neutrons of $1.835\AA$ using a high resolution powder diffractometer (HRPD). Mechanical alloying of $\sigma$-VFe compound gives rise to a dramatic structural change. After 60 hours of MA, the Fe-Fe distribution of the $\sigma$- phase VFe tetragonal structure with 30 atoms in a unit cell is found to change into that of the $\sigma$-(V,Fe) solid solution with bcc structure, which is a stable phase at elevated temperature above $1200^{\circ}C$. A comparison of X-ray diffraction data for the $\alpha$-phase has been also made with the corresponding neutron diffraction data. The (101) and (111) diffraction peaks of the $\sigma$-phase was clearly observed only in neutron diffraction pattern, which is believed to be a characteristic feature due to the chemical atomic ordering of $\sigma$- VFe phase.

      • KCI등재
      • KCI등재

        기계적 합금화법에 의한 비평형 Cu-Ta-Mo계 합금분말의 제조

        이충효,이상진 한국분말야금학회 1999 한국분말재료학회지 (KPMI) Vol.6 No.4

        The solid state reaction by mechanical alloying(MA) generally proceeds by lowering the free energy as the result of a chemical reaction at the interface between the two adjacent layers. However, Lee et $al.^{1-5)}$ reported that a mixture of Cu and Ta, the combination of which is characterized by a positive heat of mixing of +2kJ/mol, could be amorphized by mechanical alloying. This implies that there exists an up-hill process to raise the free energy of a mixture of pure Cu and la to that of an amorphous phase. It is our aim to investigate to what extent the MA is capable of producing a non-equilibrium phase with increasing the heat of mixing. The system chosen was the ternary $Cu_{30}Ta_{ 70-x}Mo_ x$ (x=35, 10). The mechanical alloying was carried out using a Fritsch P-5 planetary mill under Ar gas atmosphere. The MA powders were characterized by the X-ray diffraction with Cu-K $\alpha$ radiation, thermal analysis, electron diffraction and TEM micrographs. In the case of x=35, where pure Cu powders were mixed with equal amount of pure Ta and Mo powders, we revealed the formation of bcc solid solution after 150 h milling but its gradual decomposition by releasing fcc-Cu when milling time exceeded 200 h. However, an amorphous phase was clearly formed when the Mo content was lowered to x=10. It is believed that the amorphization of ternary $Cu_{30}Ta_{60}Mo_{10}$ powders is essentially identical to the solid state amorphization process in binary $Cu_{30}Ta_{70}$ powders.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼