RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCIE SCOPUS

      Fabrication of Starch-Lauric Acid Nanoparticles for Potential Tumor Therapy

      한글로보기

      https://www.riss.kr/link?id=A107258407

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      국문 초록 (Abstract)

      라우르산의 양을 변화시킴으로써 잠재적인 암 요법을 갖는 전분-라우르산(starch-lauric acid; St-LA) 나노 입자를 제조하고 최적화된 St-LA 나노 입자를 발견하였다. 또한 주사 전자 현미경(SEM) 및 ...

      라우르산의 양을 변화시킴으로써 잠재적인 암 요법을 갖는 전분-라우르산(starch-lauric acid; St-LA) 나노 입자를 제조하고 최적화된 St-LA 나노 입자를 발견하였다. 또한 주사 전자 현미경(SEM) 및 푸리에 변환 적외선 분광법(FTIR) 분석을 통해 St-LA 나노 입자가 성공적으로 제조되었음을 확인하였다. 세포 실험에서, St-LA 나노 입자는 A549 및 Caco-2 세포에서 세포 독성을 나타내지만 NIH/3T3 세포는 나타내지 않았음이 LIVE/DEAD 염색 및 형광 이미징에 의해 확인되었다. 따라서 St-LA 나노 입자는 잠재적으로 암 화학 요법에 적용될 수 있을 것으로 판단된다.

      더보기

      다국어 초록 (Multilingual Abstract)

      This manuscript reports on the fabrication of starch-lauric acid (St-LA) nanoparticles having potential cancer therapy. St-LA nanoparticles were fabricated by varying the amount of LA, and the optimized St-LA nanoparticles were found. In addition, it ...

      This manuscript reports on the fabrication of starch-lauric acid (St-LA) nanoparticles having potential cancer therapy. St-LA nanoparticles were fabricated by varying the amount of LA, and the optimized St-LA nanoparticles were found. In addition, it was confirmed that the St-LA nanoparticles were successfully fabricated through scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) analysis. In vitro, the St-LA nanoparticles showed cytotoxicity in A549 and Caco-2 cells but not NIH/3T3 cells. These results were confirmed by LIVE/DEAD staining and fluorescence imaging. Our next goal is to evaluate the St-LA nanoparticles containing various anticancer drugs through in vitro and in vivo studies. St-LA nanoparticles can potentially be applied to cancer chemotherapy.

      더보기

      목차 (Table of Contents)

      • 초록
      • Abstract
      • Introduction
      • Experimental
      • Results and Discussion
      • 초록
      • Abstract
      • Introduction
      • Experimental
      • Results and Discussion
      • Conclusions
      • References
      더보기

      참고문헌 (Reference)

      1 박준규, "소수성 항암제의 전달체로 응용하기 위한 리소콜릭산이 결합된 키토산 나노입자의 제조와 특성" 한국고분자학회 32 (32): 263-269, 2008

      2 Torchilin, V., "Tumor Delivery of Macromolecular Drugs Based on the EPR Effect" 63 : 131-135, 2011

      3 Dayrit, F. M., "The Properties of Lauric Acid and Their Significance in Coconut Oil" 92 : 1-15, 2015

      4 Lappano, R., "The Lauric Acid-activated Signaling Prompts Apoptosis in Cancer Cells" 3 : 17063-, 2017

      5 Yang, D., "The Antimicrobial Activity of Liposomal Lauric Acids Against Propionibacterium Acnes" 30 : 6035-6040, 2009

      6 Wang, M., "Targeting Nanoparticles to Cancer" 62 : 90-99, 2010

      7 Scott, R. W. J., "Synthesis, Characterization, and Applications of Dendrimer-Encapsulated Nanoparticles" 109 : 692-704, 2005

      8 Khanal, A., "Synthesis of Silica Hollow Nanoparticles Templated by Polymeric Micelle with Core−Shell−Corona Structure" 129 : 1534-1535, 2007

      9 Lu, D. R., "Starch-based Completely Biodegradable Polymer Materials" 3 : 366-375, 2009

      10 Na, K., "Self-assembled Hydrogel Nanoparticles from Curdlan Derivatives: Characterization, Anti-cancer Drug Release and Interaction with a Hepatoma Cell Line (HepG2)" 69 : 225-236, 2000

      1 박준규, "소수성 항암제의 전달체로 응용하기 위한 리소콜릭산이 결합된 키토산 나노입자의 제조와 특성" 한국고분자학회 32 (32): 263-269, 2008

      2 Torchilin, V., "Tumor Delivery of Macromolecular Drugs Based on the EPR Effect" 63 : 131-135, 2011

      3 Dayrit, F. M., "The Properties of Lauric Acid and Their Significance in Coconut Oil" 92 : 1-15, 2015

      4 Lappano, R., "The Lauric Acid-activated Signaling Prompts Apoptosis in Cancer Cells" 3 : 17063-, 2017

      5 Yang, D., "The Antimicrobial Activity of Liposomal Lauric Acids Against Propionibacterium Acnes" 30 : 6035-6040, 2009

      6 Wang, M., "Targeting Nanoparticles to Cancer" 62 : 90-99, 2010

      7 Scott, R. W. J., "Synthesis, Characterization, and Applications of Dendrimer-Encapsulated Nanoparticles" 109 : 692-704, 2005

      8 Khanal, A., "Synthesis of Silica Hollow Nanoparticles Templated by Polymeric Micelle with Core−Shell−Corona Structure" 129 : 1534-1535, 2007

      9 Lu, D. R., "Starch-based Completely Biodegradable Polymer Materials" 3 : 366-375, 2009

      10 Na, K., "Self-assembled Hydrogel Nanoparticles from Curdlan Derivatives: Characterization, Anti-cancer Drug Release and Interaction with a Hepatoma Cell Line (HepG2)" 69 : 225-236, 2000

      11 Yan, W., "Recent Advances in Liposome-Based Nanoparticles for Antigen Delivery" 47 : 329-344, 2007

      12 Do Van Cong, "Preparation and Characterization of Nanocomposites Based on Poly(ethylene-co-vinyl acetate), Polylactic Acid, and TiO2 Nanoparticles" 한국고분자학회 40 (40): 355-364, 2016

      13 Lee, J. -H., "Polymeric Nanoparticle Composed of Fatty Acids and Poly(ethylene glycol) as a Drug Carrier" 251 : 23-32, 2003

      14 김유미, "Paclitaxel-loaded Nanoparticles of Cholanic Acid-Modified Hyaluronan Oligosaccharide for Tumor-site Specific Delivery" 한국고분자학회 39 (39): 967-975, 2015

      15 Matés, J. M., "Oxidative Stress in Apoptosis and Cancer: An Update" 86 : 1649-1665, 2012

      16 Ozben, T., "Oxidative Stress and Apoptosis: Impact on Cancer Therapy" 96 : 2181-2196, 2007

      17 Tracey, T. J., "Neuronal Lipid Metabolism: Multiple Pathways Driving Functional Outcomes in Health and Disease" 11 : 1-25, 2018

      18 Haley, B., "Nanoparticles for Drug Delivery in Cancer Treatment" 26 : 57-64, 2008

      19 Singh, R., "Nanoparticle-based Targeted Drug Delivery" 86 : 215-223, 2009

      20 Hu, C. -M. J., "Nanoparticle-assisted Combination Therapies for Effective Cancer Treatment" 1 : 323-334, 2010

      21 Kong, J. Y., "Lovastatin Does Not Accentuate but is Rather Additive to Palmitate-induced Apoptosis in Cardiomyocytes" 67 : 293-302, 2002

      22 Calder, P. C., "Long-chain Fatty Acids and Inflammation" 71 : 284-289, 2012

      23 Veeresh Babu, S. V., "Lauric acid and Myristic Acid Prevent Testosterone Induced Prostatic Hyperplasia in Rats" 626 : 262-265, 2010

      24 Weng, W. -H., "Lauric Acid Can Improve The Sensitization of Cetuximab in KRAS/BRAF Mutated Colorectal Cancer Cells by Retrievable microRNA-378Expression" 35 : 107-116, 2016

      25 Xu, Z. P., "Inorganic Nanoparticles as Carriers for Efficient Cellular Delivery" 61 : 1027-1040, 2006

      26 Odenigbo, U. M., "Fatty Acids and Phytochemical Contents of Different Coconut Seed Flesh in Nigeria" 3 : 176-182, 2011

      27 Kunishima, M., "Esterification of Carboxylic Acids with Alcohols by 4-(4,6-Dimethoxy-1,3,5-triazin-2-yl)-4-methyl-morpholinium Chloride (DMTMM)" 8 : 1255-1256, 1999

      28 Zhang, H. Y., "Ergosterol-loaded Poly(lactide-co-glycolide) Nanoparticles with Enhanced In Vitro Antitumor Activity and Oral Bioavailability" 37 : 834-844, 2016

      29 Kulkarni, S. A., "Effects of Particle Size and Surface Modification on Cellular Uptake and Biodistribution of Polymeric Nanoparticles for Drug Delivery" 30 : 2512-2522, 2013

      30 Win, K. Y., "Effects of Particle Size and Surface Coating on Cellular Uptake of Polymeric Nanoparticles for Oral Delivery of Anticancer Drugs" 26 : 2713-2722, 2005

      31 He, C., "Effects of Particle Size and Surface Charge on Cellular Uptake and Biodistribution of Polymeric Nanoparticles" 31 : 3657-3666, 2010

      32 Lehto, V.-P., "EGF Receptor: Which Way to Go?" 491 : 1-3, 2001

      33 Lim, S. A., "Chlorin E6-embedded Starch Nanogels for Improved Photodynamic Tumor Ablation" 29 : 2766-2773, 2018

      34 Song, S., "Carbon Nanotube/reduced Graphene Oxide Hybrid for Simultaneously Enhancing the Thermal Conductivity and Mechanical Properties of Styrene -butadiene Rubber" 123 : 158-167, 2017

      35 Bhunia, S. K., "Carbon Nanoparticle-based Fluorescent Bioimaging Probes" 3 : 1473-, 2013

      36 Kumari, A., "Biodegradable Polymeric Nanoparticles Based Drug Delivery Systems" 75 : 1-18, 2010

      37 Agoramoorthy, G., "Antibacterial and Antifungal Activities of Fatty Acid Methyl Esters of the Blind-your-eye Mangrove from India" 38 : 739-742, 2007

      38 D’Este, M., "A Systematic Analysis of DMTMM vs EDC/NHS for Ligation of Amines to Hyaluronan in Water" 108 : 239-246, 2014

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2012-06-04 학술지명변경 외국어명 : 미등록 -> POLYMER(KOREA) KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2008-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2006-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2004-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2001-07-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      1999-01-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.58 0.47 0.5
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.45 0.43 0.401 0.13
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼