RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      역 물류 환경 인터넷 경매를 위한 요소 선택 응용 추천 시스템

      한글로보기

      https://www.riss.kr/link?id=A105544495

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      국문 초록 (Abstract)

      다양한 데이터 마이닝 기법들의 발전과 더불어, 속성 (Feature 또는 Attribute) 의 범위 (Dimension) 를 줄이기 위해 많은 요소 선택 방법이 개발되었다. 이는 확장성 (Scalability) 을 향상시킬 수 있고 학습 모델 (Learning Model)을 더욱 쉽게 해석할 수 있도록 한다. 이 논문에서는 네스티드 분할 (Nested Partition, 이하 NP) 을 이용한 새로운 최적화 기반 속성 선택 방법을 NP 기본 구조와 다양한 실험 문제의 수치적 결과들과 함께 제시하여 어떻게 NP의 최적화 구조가 속성 선택 과정에 기여를 하고 있는지 보여준다. 그리고 이 새로운 지능적인 분할 방법이 어떻게 매우 효율적인 분할을 수행하는지를 제시한다. 이 새로운 속성 선택 방법은 필터 (Filter) 방법과 래퍼 (Wrapper) 방법 두 가지로 구현될 수 있다. 사례 연구로서, B2B e-비즈니스 시스템에서 효과적으로 사용될 수 있는 추천 시스템(Recommender System) 을 제안하였다. 이 추천 시스템은 분류 기법 (Classification Rule) 과 제시된 NP 기반 요소 선택 방법을 사용하고 있다. 이 추천 시스템은 사용자의 인터넷 경매 참여를 추천하는데 사용되며, 이 때 제안된 요소 선택 앨고리듬은 추천 규칙들이 쉽게 이해될 수 있도록 모델을 간략화 하는데 사용된다.
      번역하기

      다양한 데이터 마이닝 기법들의 발전과 더불어, 속성 (Feature 또는 Attribute) 의 범위 (Dimension) 를 줄이기 위해 많은 요소 선택 방법이 개발되었다. 이는 확장성 (Scalability) 을 향상시킬 수 있고 ...

      다양한 데이터 마이닝 기법들의 발전과 더불어, 속성 (Feature 또는 Attribute) 의 범위 (Dimension) 를 줄이기 위해 많은 요소 선택 방법이 개발되었다. 이는 확장성 (Scalability) 을 향상시킬 수 있고 학습 모델 (Learning Model)을 더욱 쉽게 해석할 수 있도록 한다. 이 논문에서는 네스티드 분할 (Nested Partition, 이하 NP) 을 이용한 새로운 최적화 기반 속성 선택 방법을 NP 기본 구조와 다양한 실험 문제의 수치적 결과들과 함께 제시하여 어떻게 NP의 최적화 구조가 속성 선택 과정에 기여를 하고 있는지 보여준다. 그리고 이 새로운 지능적인 분할 방법이 어떻게 매우 효율적인 분할을 수행하는지를 제시한다. 이 새로운 속성 선택 방법은 필터 (Filter) 방법과 래퍼 (Wrapper) 방법 두 가지로 구현될 수 있다. 사례 연구로서, B2B e-비즈니스 시스템에서 효과적으로 사용될 수 있는 추천 시스템(Recommender System) 을 제안하였다. 이 추천 시스템은 분류 기법 (Classification Rule) 과 제시된 NP 기반 요소 선택 방법을 사용하고 있다. 이 추천 시스템은 사용자의 인터넷 경매 참여를 추천하는데 사용되며, 이 때 제안된 요소 선택 앨고리듬은 추천 규칙들이 쉽게 이해될 수 있도록 모델을 간략화 하는데 사용된다.

      더보기

      목차 (Table of Contents)

      • 1. Introduction
      • 2. Methodology
      • 3. Evaluation of the NP-Wrapper and NP-Filter
      • 4. Case Study - Recommender Systems
      • 5. Conclusion
      • 1. Introduction
      • 2. Methodology
      • 3. Evaluation of the NP-Wrapper and NP-Filter
      • 4. Case Study - Recommender Systems
      • 5. Conclusion
      • REFERENCES
      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼