RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      SCI SCIE SCOPUS

      Hydrophilic surface modification of poly(methyl methacrylate)-based ocular prostheses using poly(ethylene glycol) grafting

      한글로보기

      https://www.riss.kr/link?id=A107430106

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      <P><B>Abstract</B></P> <P>Ocular prostheses are custom-made polymeric inserts that can be placed in anophthalmic sockets for cosmetic rehabilitation. Prosthetic eye wearers have reduced tear amount, and they often experi...

      <P><B>Abstract</B></P> <P>Ocular prostheses are custom-made polymeric inserts that can be placed in anophthalmic sockets for cosmetic rehabilitation. Prosthetic eye wearers have reduced tear amount, and they often experience dry eye symptoms including dryness, irritation, discomfort, and discharge. Most modern ocular prostheses are made of poly(methyl methacrylate) (PMMA), which is highly hydrophobic. Previous research has shown that improving the wettability of contact lens materials decreases its wearers discomfort by increasing lubrication. Therefore, hydrophilic modification of PMMA-based ocular prostheses might also improve patient discomfort by improving lubrication. We modified the surfaces of PMMA-based ocular prostheses using poly(ethylene glycol) (PEG), which is hydrophilic. To do this, we used two strategies. One was a “grafting from” method, whereby PEG was polymerized from the PMMA surface. The other was a “grafting to” method, which involved PEG being covalently bonded to an amine-functionalized PMMA surface. Assessments involving the water contact angle, ellipsometry, and X-ray photoelectron spectroscopy indicated that PEG was successfully introduced to the PMMA surfaces using both strategies. Scanning electron microscopy and atomic force microscopy images revealed that neither strategy caused clinically significant alterations in the PMMA surface morphology. In vitro bacterial adhesion assessments showed that the hydrophilic modifications effectively reduced bacterial adhesion without inducing cytotoxicity. These results imply that hydrophilic surface modifications of conventional ocular prostheses may decrease patient discomfort and ocular prosthesis-related infections.</P> <P><B>Highlights</B></P> <P> <UL> <LI> Surfaces of PMMA-based ocular prosthesis were modified via PEG grafting. </LI> <LI> The hydrophilic surface modifications effectively inhibited bacterial adhesion. </LI> <LI> These modifications of ocular prostheses may decrease discomfort and infections. </LI> </UL> </P> <P><B>Graphical abstract</B></P> <P>[DISPLAY OMISSION]</P>

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼