RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCIE SCOPUS

      Robot Subgoal-guided Navigation in Dynamic Crowded Environments with Hierarchical Deep Reinforcement Learning

      한글로보기

      https://www.riss.kr/link?id=A108641597

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Although deep reinforcement learning has recently achieved some successes in robot navigation, there are still unsolved problems. Particularly, a robot guided by a distant ultimate goal is easy to get stuck in danger or encounter collisions in dynamic...

      Although deep reinforcement learning has recently achieved some successes in robot navigation, there are still unsolved problems. Particularly, a robot guided by a distant ultimate goal is easy to get stuck in danger or encounter collisions in dynamic crowded environments due to the lack of long-term perspectives. In this paper, a novel subgoal-guided approach based on two-level hierarchical deep reinforcement learning with spatial-temporal graph attention networks (ST-GANets), called SG-HDRL, is proposed for a robot navigating in a dynamic crowded environment with autonomous obstacles, e.g., crowd. Specifically, the high-level policy, that models the spatialtemporal relation between the robot and the obstacles using the obstacles’ trajectories by the designed high-level ST-GANet, generates intermediate subgoals from a longer-term perspective over higher temporal scales. The subgoals give a favorable and collision-free direction to avoid encountering danger or collisions while approaching the ultimate goal. The low-level policy, that similarly implements the designed low-level ST-GANet to implicitly predict the obstacles’ motions, takes the subgoals as short-term guidance through an intrinsic reward incentive to generate primitive actions for the robot. Simulation results demonstrate that SG-HDRL using ST-GANets has better performances compared with state-of-the-art baselines. Furthermore, the proposed SG-HDRL is deployed to an experimental platform based on omnidirectional cars, and experiment results validate the effectiveness and practicability of the proposed SG-HDRL.

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼