RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCOPUS

      합성곱 신경망 기반 환경잡음에 강인한 교통 소음 분류 모델 = Convolutional neural network based traffic sound classification robust to environmental noise

      한글로보기

      https://www.riss.kr/link?id=A106149434

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      As urban population increases, research on urban environmental noise is getting more attention. In this study, we classify the abnormal noise occurring in traffic situation by using a deep learning algorithm which shows high performance in recent environmental noise classification studies. Specifically, we classify the four classes of tire skidding sounds, car crash sounds, car horn sounds, and normal sounds using convolutional neural networks. In addition, we add three environmental noises, including rain, wind and crowd noises, to our training data so that the classification model is more robust in real traffic situation with environmental noises. Experimental results show that the proposed traffic sound classification model achieves better performance than the existing algorithms, particularly under harsh conditions with environmental noises.
      번역하기

      As urban population increases, research on urban environmental noise is getting more attention. In this study, we classify the abnormal noise occurring in traffic situation by using a deep learning algorithm which shows high performance in recent envi...

      As urban population increases, research on urban environmental noise is getting more attention. In this study, we classify the abnormal noise occurring in traffic situation by using a deep learning algorithm which shows high performance in recent environmental noise classification studies. Specifically, we classify the four classes of tire skidding sounds, car crash sounds, car horn sounds, and normal sounds using convolutional neural networks. In addition, we add three environmental noises, including rain, wind and crowd noises, to our training data so that the classification model is more robust in real traffic situation with environmental noises. Experimental results show that the proposed traffic sound classification model achieves better performance than the existing algorithms, particularly under harsh conditions with environmental noises.

      더보기

      참고문헌 (Reference)

      1 B. McFee, "librosa: Audio and music signal analysis in python" 18-25, 2015

      2 "http://www.freesound.org"

      3 M. Abadi, "Tensorflow: a system for large-scale machine learning" 16 : 265-283, 2016

      4 R. Banerjee, "Participatory sensing based traffic condition monitoring using horn detection" 567-569, 2013

      5 K. J. Piczak, "Environmental sound classification with convolutional neural networks" 1-6, 2015

      6 J. Salamon, "Deep convolutional neural networks and data augmentation for environmental sound classification" 24 : 279-283, 2017

      7 M. Cristani, "Audio-visual event recognition in surveillance video sequences" 9 : 257-267, 2007

      8 P. Foggia, "Audio surveillance of roads: A system for detecting anomalous sounds" 17 : 279-288, 2016

      9 J. Salamon, "A dataset and taxonomy for urban sound research" 1041-1044, 2014

      1 B. McFee, "librosa: Audio and music signal analysis in python" 18-25, 2015

      2 "http://www.freesound.org"

      3 M. Abadi, "Tensorflow: a system for large-scale machine learning" 16 : 265-283, 2016

      4 R. Banerjee, "Participatory sensing based traffic condition monitoring using horn detection" 567-569, 2013

      5 K. J. Piczak, "Environmental sound classification with convolutional neural networks" 1-6, 2015

      6 J. Salamon, "Deep convolutional neural networks and data augmentation for environmental sound classification" 24 : 279-283, 2017

      7 M. Cristani, "Audio-visual event recognition in surveillance video sequences" 9 : 257-267, 2007

      8 P. Foggia, "Audio surveillance of roads: A system for detecting anomalous sounds" 17 : 279-288, 2016

      9 J. Salamon, "A dataset and taxonomy for urban sound research" 1041-1044, 2014

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2026 평가예정 재인증평가 신청대상 (재인증)
      2020-01-01 평가 등재학술지 유지 (재인증) KCI등재
      2017-01-01 평가 등재학술지 유지 (계속평가) KCI등재
      2013-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2008-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2006-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2004-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2001-07-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      1999-01-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.23 0.23 0.22
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.2 0.18 0.398 0.07
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼