RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      SCOPUS SCIE

      On-Demand Gas-to-Liquid Process To Fabricate Thermoresponsive Antimicrobial Nanocomposites and Coatings

      한글로보기

      https://www.riss.kr/link?id=A107428726

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      <P>Antimicrobial material is emerging as a major component of the mitigation strategy against microbial growth on abiotic surfaces. In this work, a newly designed process is proposed to fabricate thermoresponsive antimicrobial nano composites (T...

      <P>Antimicrobial material is emerging as a major component of the mitigation strategy against microbial growth on abiotic surfaces. In this work, a newly designed process is proposed to fabricate thermoresponsive antimicrobial nano composites (TANs) and coatings (TACs) as an on-demand system. Thermoresponsive polymer (TRP)-incorporated silver (Ag) nanocomposites with silica nanoparticles (SNPs) or carbon nanotubes (CNTs; Ag-SNP@TRP or Ag-CNT@TRP) were produced by a single-pass gas-to-liquid process. The SNPs or CNTs were first produced by spark ablation and successively injected for dispersal in a liquid cell containing polydimethylsiloxane, poly(N-isopropylacrylamide), and silver nitrate under ultrasound irradiation. Suspensions of Ag-SNP@TRP or Ag-CNT@TRP nanocomposites were then deposited on a touch screen panel (TSP) protection film via electrohydrodynamic spray to form transparent antibacterial coatings. Fundamental antibacterial activities of TANs were evaluated against Escherichia coli and Staphylococcus epidermidis. The TANs showed stronger antibacterial activities at the higher temperature for all testing conditions. Lower minimum inhibitory concentrations of AgSNP@TRP and Ag-CNT@TRP nanocomposites were required against the two bacteria at 37 C-circle compared to those at 27 C-circle. The TACs on display showed elevated antimicrobial activity when the panel was turned on (38.1 C-circle) compared with when the panel was turned off (23.8 C-circle). This work provides a utilizable concept to continuously fabricate TANs and TACs, and it specifically offers stimuli-sensitive control of antimicrobial activity on TSPs, including other frequently touched surfaces.</P>

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼