Capacitive deionization (CDI) process is a removal process of ions via electrochemical adsorption using porous carbon materials. The ions are adsorbed onto the surface of porous carbon electrodes by applying electric field to brackish water. Adsorbed ...
Capacitive deionization (CDI) process is a removal process of ions via electrochemical adsorption using porous carbon materials. The ions are adsorbed onto the surface of porous carbon electrodes by applying electric field to brackish water. Adsorbed ions are desorbed from the surface of the porous carbon electrdes by eliminating the field or reversing electric field, resulting in the regeneration of electrodes. Recently, carbon aerogel electrodes, one of the porous carbon materials, are bring used for CDI process. In this study, the electrode using carbon aerogel (specific surface area: 960m^(2)/g, pore volume: 3.71 cc/g, and pore diameter: 15.19 nm), activated carbon(BP-25: specific surface 2500m^(2)g, frpm Kansai Cole & Chemicals Co. Ltd), carbon nanotube (MMMT type, 10-20 nm diameter, from ILJIN Nanotech) and carbon nanofiber (straight type, 130∼150 nm diameter, from Nanomirae Co. Ltd) were fabricated by dip coating method. Porous carbon electrodes were charged at 0.9 V, discharged at -0.001 V, cycled 10 times, and their CDI performances were compared with CDI characteristics. An activated carbon electrode showed higher average charge and discharge coulombs than others and its average charge and discharges were 0.229 [Aㆍmin] and 0.143 [Aㆍmin], respectively. At the average discharge specific-coulombs, a carbon aerogel electrode had highest average specific discharge coulomb of 0.593 [(Aㆍmin)/g]. The values of coulombic-efficiencies showed 63.98% for the carbon aerogel electrode, 62.45% for the activated carbon, and 56.50% for the carbon nanofiber.