RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      프란시스 수차 모델의 흡입 헤드가 캐비테이션 초생 및 발달에 미치는 영향 = Effect of Suction Head on Inception and Development of Cavitation in a Francis Turbine Model

      한글로보기

      https://www.riss.kr/link?id=A108210368

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Francis turbine is one of the highly efficient turbines which converts hydraulic energy to mechanical energy. At lower flow rate operating conditions, the turbine’s stable operation is affected due to the downstream swirl instabilities. Cavitation i...

      Francis turbine is one of the highly efficient turbines which converts hydraulic energy to mechanical energy. At lower flow rate operating conditions, the turbine’s stable operation is affected due to the downstream swirl instabilities. Cavitation is also a very common and severe problem in these turbines due to which turbine components may fail because of erosion and pressure fluctuations. In the turbine, the suction head affects the cavitation’s inception and development. A numerical investigation of the effect of suction head on cavitation at part load condition is attempted in the present study using CFX code. The suction head is evaluated based on creating different suction pressure at the draft tube outlet. The steady-state numerical calculations are performed with a structured and unstructured grid. For the acceptance of generated grid, the grid convergence index is also calculated. Reynolds averaged Navier-Stokes (RANS) equations are solved accompanying the Rayleigh-Plesset model to capture the turbulent flow with cavitation. An experiment is also performed for the verification of the numerical results. As the suction head increases, the cavitation is initiated and developed and both the efficiency and power decrease. The head loss in the draft tube is maximum for fully developed cavitation with a 2% deviation from without cavitation case for which the loss is minimum. The vortex rope strength for the higher values of suction heads is higher compared to lower values of suction heads.
      Similarly, the swirl intensity is also higher for higher suction heads. The deciding parameter of the suction head can be predicted for the stable operation of the turbine using the current investigation.

      더보기

      참고문헌 (Reference)

      1 I. B. Celik, "Procedure for estimation and reporting of uncertainty due to discretization in CFD applications" 130 (130): 2008-, 2008

      2 X. Zhou, "Numerical and experimental investigation of the effect of baffles on flow instabilities in a Francis turbine draft tube under partial load conditions" 11 (11): 1-15, 2019

      3 F. Bakir, "Numerical and Experimental Investigationsof the Cavitating Behavior of an Inducer" 10 (10): 2004

      4 R. Zhang, "Numerical Investigation of Pressure Fluctuation and Cavitation inside a Francis Turbine Draft Tube with Air Admission through a Fin" 1909 (1909): 2021-, 2021

      5 A. Yu, "Investigation of the pressure fluctuation alleviation in a hydraulic turbine by runner modification" 11 (11): 2019-, 2019

      6 A. Laouari, "Investigation of steady and unsteady cavitating flows through a small Francis turbine" 172 : 841-861, 2021

      7 N. Sotoudeh, "Investigation of Rotating Vortex Rope formation during load variation in a Francis turbine draft tube" 151 : 238-254, 2020

      8 F. Avellan, "Introduction to cavitation in hydraulic machinery"

      9 S. J. Kim, "Internal flow phenomena of a Pump–Turbine model in turbine mode with different Thoma numbers" 184 : 510-525, 2022

      10 International Electrotechnical Commission, "Hydraulic Turbines, Storage Pumps and Pump-Turbines–Model Acceptance Tests" IEC 2019

      1 I. B. Celik, "Procedure for estimation and reporting of uncertainty due to discretization in CFD applications" 130 (130): 2008-, 2008

      2 X. Zhou, "Numerical and experimental investigation of the effect of baffles on flow instabilities in a Francis turbine draft tube under partial load conditions" 11 (11): 1-15, 2019

      3 F. Bakir, "Numerical and Experimental Investigationsof the Cavitating Behavior of an Inducer" 10 (10): 2004

      4 R. Zhang, "Numerical Investigation of Pressure Fluctuation and Cavitation inside a Francis Turbine Draft Tube with Air Admission through a Fin" 1909 (1909): 2021-, 2021

      5 A. Yu, "Investigation of the pressure fluctuation alleviation in a hydraulic turbine by runner modification" 11 (11): 2019-, 2019

      6 A. Laouari, "Investigation of steady and unsteady cavitating flows through a small Francis turbine" 172 : 841-861, 2021

      7 N. Sotoudeh, "Investigation of Rotating Vortex Rope formation during load variation in a Francis turbine draft tube" 151 : 238-254, 2020

      8 F. Avellan, "Introduction to cavitation in hydraulic machinery"

      9 S. J. Kim, "Internal flow phenomena of a Pump–Turbine model in turbine mode with different Thoma numbers" 184 : 510-525, 2022

      10 International Electrotechnical Commission, "Hydraulic Turbines, Storage Pumps and Pump-Turbines–Model Acceptance Tests" IEC 2019

      11 M. Nishi, "Hydraulic Machinery and Cavitation" 1996

      12 H. Foroutan, "Flow in the simplified draft tube of a Francis turbine operating at partial load-Part II: Control of the vortex rope" 81 (81): 2014-, 2014

      13 P. P. Gohil, "Effect of temperature, suction head and flow velocity on cavitation in a Francis turbine of small hydro power plant" 93 : 613-624, 2015

      14 S. J. Kim, "Effect of fins on the internal flow characteristics in the draft tube of a francis turbine model" 13 (13): 2020-, 2020

      15 X. Escaler, "Detection of cavitation in hydraulic turbines" 20 (20): 983-1007, 2006

      16 S. Liu, "Cavitating turbulent flow simulation in a Francis turbine based on mixture model" 131 (131): 2009-, 2009

      17 M. S. Iliescu, "Analysis of the cavitating draft tube vortex in a francis turbine using particle image velocimetry measurements in two-phase flow" 130 (130): 2008-, 2008

      18 "ANSYS CFX-Solver Theory Guide, Release 16.0"

      19 P. J. Zwart, "A two-phase flow model for predicting cavitation dynamics" 152-, 2004

      20 A. Muhirwa, "A review on remedial attempts to counteract the power generation compromise from draft tubes of hydropower plants" 150 : 743-764, 2020

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2027 평가예정 재인증평가 신청대상 (재인증)
      2021-01-01 평가 등재학술지 유지 (재인증) KCI등재
      2018-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2015-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2014-01-08 학회명변경 영문명 : Korean Fluid Machinery Association -> Korean Society for Fluid Machinery KCI등재
      2014-01-08 학술지명변경 외국어명 : 미등록 -> The KSFM Journal of Fluid Machinery KCI등재
      2013-01-09 학회명변경 한글명 : 유체기계공업학회 -> 한국유체기계학회 KCI등재
      2013-01-09 학술지명변경 한글명 : 유체기계저널 -> 한국유체기계학회 논문집 KCI등재
      2011-01-01 평가 등재 1차 FAIL (등재유지) KCI등재
      2009-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2006-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2005-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2004-01-01 평가 등재후보학술지 유지 (등재후보1차) KCI등재후보
      2003-01-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.32 0.32 0.29
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.25 0.23 0.601 0.04
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼