RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      Simultaneous Optimization of Task Allocation and Path Planning Using Mixed-Integer Programming for Time and Capacity Constrained Multi-Agent Pickup and Delivery

      한글로보기

      https://www.riss.kr/link?id=A108487297

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Lately, there has been a need to improve the efficiency of material movements within factories and multi-agents are required to perform these tasks. In this study, graphical representation and mixed-integer programming have been adopted for simultaneo...

      Lately, there has been a need to improve the efficiency of material movements within factories and multi-agents are required to perform these tasks. In this study, graphical representation and mixed-integer programming have been adopted for simultaneous optimization of task allocation and path planning for each agent to achieve the following three goals. First, this study realizes time and capacity constrained multi-agent pickup and delivery (TCMAPD) that simultaneously considers time constraints, capacity constraints, and collision avoidance. Previous studies have not considered these constraints simultaneously. Thus, we can solve the problems associated with using multi-agents in actual factories. Second, we achieved TCMAPD that optimizes the collision avoidance between multi-agents. In conventional research, only a single collision avoidance method can be used. However, an appropriate route was selected from a variety of avoidance methods in this study. Hence, we could achieve a more efficient task allocation and path planning with collision avoidance. Third, the proposed method simultaneously optimizes task allocation and path planning for each agent. Previous studies have separately considered the approach of optimizing task allocation and path planning or used the cost of path planning after task allocation to again perform task allocation and path planning. To simultaneously optimize them in a single plan, we have developed a solution-derivable formulation using mixed-integer programming to derive a globally optimal solution. This enables efficient planning with a reduced total time traveled by the agents.

      더보기

      목차 (Table of Contents)

      • Abstract
      • 1. INTRODUCTION
      • 2. RELATED WORK
      • 3. GRAPHICAL REPRESENTATION
      • 4. MIXED-INTEGER PROGRAMMING
      • Abstract
      • 1. INTRODUCTION
      • 2. RELATED WORK
      • 3. GRAPHICAL REPRESENTATION
      • 4. MIXED-INTEGER PROGRAMMING
      • 5. SIMULATION
      • 6. CONCLUSION
      • REFERENCES
      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼