RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      SCOPUS SCIE

      Simultaneous reduction in the exhaust emissions by a high exhaust gas recirculation ratio in a dimethyl-ether-fuelled diesel engine at a low-load operating condition

      한글로보기

      https://www.riss.kr/link?id=A107555465

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      <P>The purpose of this study was to investigate the effect of the exhaust gas recirculation rate on the combustion and exhaust emission reduction characteristics of dimethyl ether fuel in a single-cylinder diesel engine. To investigate the effec...

      <P>The purpose of this study was to investigate the effect of the exhaust gas recirculation rate on the combustion and exhaust emission reduction characteristics of dimethyl ether fuel in a single-cylinder diesel engine. To investigate the effects on emission reduction, the test set-up was composed of a dimethyl ether supply system, a spray visualization system, an engine combustion system and an emissions analysis system. In this work, the spray visualization and exhaust emissions were measured using a high-speed camera with a metal halide lamp, a smoke meter and an emission gas analyser. The spray tip penetration and tip velocity of dimethyl ether fuel were lower than those of conventional diesel fuel. The reduction slope of the spray cone angle for dimethyl ether was less than that for diesel fuel owing to its low density and superior evaporation characteristics. The increase in the exhaust gas recirculation rate caused an extension of the ignition delay for dimethyl ether. During the extended ignition delay, the improved mixing characteristics influenced the slight decrease in the combustion period. An increase in the exhaust gas recirculation rate caused a significant reduction in the emission of nitrogen oxides. In addition, the soot emission was very low owing to the intrinsic characteristics of dimethyl ether (no direct carbon-carbon bonds). At the given equivalence ratio condition, the indicated specific hydrocarbon and indicated specific carbon monoxide emissions for dimethyl ether were extremely low when dimethyl ether spray was injected into the piston bowl (from 25 degrees before top dead centre to top dead centre). Also, in this case, a change in the exhaust gas recirculation rate for dimethyl ether combustion had minimal effects on the indicated specific hydrocarbon and indicated specific carbon monoxide emissions. These results suggest that the use of high exhaust gas recirculation with dimethyl ether fuel can achieve near-zero exhaust emissions (nitrogen oxides, soot, hydrocarbons and carbon monoxide).</P>

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼