RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCIE SCOPUS

      Numerical calculation and optimization designs in engine cooling water pump

      한글로보기

      https://www.riss.kr/link?id=A105078384

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      The cavitation damage in the Engine cooling water pump (ECWP) is the key factor that shortens the lifespan of automobile cooling systems, and causes vibration and noise. To improve cavitation performance and external characteristics of ECWP, three opt...

      The cavitation damage in the Engine cooling water pump (ECWP) is the key factor that shortens the lifespan of automobile cooling systems, and causes vibration and noise. To improve cavitation performance and external characteristics of ECWP, three optimized models were designed on the basis of WP7 diesel ECWP. The whole flow fields in three models and the prototype pump were numerically simulated, employing the time averaged Navier-Stokes equation, the standard k-ε turbulent model and Zwart-Gerber-Belamri multiphase flow model by ANSYS-CFX software. Pressure distribution, turbulent kinetic energy distribution, bubble volume fraction distribution, external characteristics and cavitation performance of the prototype pump and optimized models were compared and analyzed. The results show that the external characteristics and cavitation performance of the optimized models are significantly better than that in the prototype pump. Through decreasing the inlet blade angle and wrap angle, extending the blade to inlets and extending a certain inclination in the blade, shock loss in blade inlet was reduced and so, the performance of pump will be improved. The flow condition at blade inlet will also be improved greatly, which in turn improves cavitation performance. When reducing the quantity of blades, the excretion coefficient will drop, flow area of blade inlet becomes bigger, but head has a little drop. And the pump optimized by reducing the quantity of blades has the optimal cavitation performance among three optimized models. With the decrease of impeller diameter, the absolute pressure in the critical cavitation point becomes bigger, the inlet bubble volume fraction at the same absolute pressure increases while cavitation performance gets worse. The obtained numerical results were compared with the experimental ones, and the outcome showed the same tendency between the two along with acceptable error.

      더보기

      참고문헌 (Reference)

      1 L. Hua, "The study of characteristics prediction of car pumps based on hydraulic loss model" Shanghai Jiao Tong University 2012

      2 "T81266.2, Internal combustion ECWPs, Part 2: Asemblies and test method" China Machine Press 2010

      3 R. Cipollone, "Sliding vane rotary pump in engine cooling system for automotive sector" 76 : 157-166, 2015

      4 S. Xiang, "Research of cooling system of automobile engine based on AMESim" Chang’an University 2014

      5 Y. Z. Chen, "Pump Handbook" China Petrochemical Press 2003

      6 Y. Yang, "Optimum design of automobile water pump based on CFD" 32 (32): 477-481, 2014

      7 J. F. Zhang, "Numerical simulation of recirculation control at centrifugal pump inlet" 33 (33): 402-407, 2012

      8 L. Jing, "Numerical simulation and performance prediction of car pumps" Shanghai Jiao Tong University 2013

      9 Tang Xue-lin, "Numerical investigations on cavitating flows with thermodynamic effects in a diffuser-type centrifugal pump" 대한기계학회 27 (27): 1655-1664, 2013

      10 XiaoMei Guo, "Numerical and experimental investigations on the cavitation characteristics of a high-speed centrifugal pump with a splitter-blade inducer" 대한기계학회 29 (29): 259-267, 2015

      1 L. Hua, "The study of characteristics prediction of car pumps based on hydraulic loss model" Shanghai Jiao Tong University 2012

      2 "T81266.2, Internal combustion ECWPs, Part 2: Asemblies and test method" China Machine Press 2010

      3 R. Cipollone, "Sliding vane rotary pump in engine cooling system for automotive sector" 76 : 157-166, 2015

      4 S. Xiang, "Research of cooling system of automobile engine based on AMESim" Chang’an University 2014

      5 Y. Z. Chen, "Pump Handbook" China Petrochemical Press 2003

      6 Y. Yang, "Optimum design of automobile water pump based on CFD" 32 (32): 477-481, 2014

      7 J. F. Zhang, "Numerical simulation of recirculation control at centrifugal pump inlet" 33 (33): 402-407, 2012

      8 L. Jing, "Numerical simulation and performance prediction of car pumps" Shanghai Jiao Tong University 2013

      9 Tang Xue-lin, "Numerical investigations on cavitating flows with thermodynamic effects in a diffuser-type centrifugal pump" 대한기계학회 27 (27): 1655-1664, 2013

      10 XiaoMei Guo, "Numerical and experimental investigations on the cavitation characteristics of a high-speed centrifugal pump with a splitter-blade inducer" 대한기계학회 29 (29): 259-267, 2015

      11 H. Song, "Fundamental research on intelligent cooling system for vehicle engines" Zhejiang University 2012

      12 S. Duplaa, "Experimental study of a cavitating centrifugal pump during fast startups" 132 (132): 365-368, 2012

      13 N. J. Liao, "Discussion on the pump cavitation in LJ465Q series engine" 2 : 177-183, 2010

      14 D. H. Sheng, "Design and test research on electronic pump cooling system of engine" 40 (40): 5-9, 2012

      15 Xianwu Luo, "Comparison of cavitation prediction for a centrifugal pump with or without volute casing" 대한기계학회 27 (27): 1643-1648, 2013

      16 W. Li, "Cavitation performance prediction of engine cooling water pump based on CFD" 30 (30): 176-180, 2012

      17 G. L. Chahine, "Cavitation and cavitation erosion" 2014

      18 Y. Bo, "Auto Water pump structural development and heat dissipation effect research based on Pump Linx" 1 : 40-42, 2016

      19 Houlin Liu, "Assessment of a turbulence model for numerical predictions of sheet-cavitating flows in centrifugal pumps" 대한기계학회 27 (27): 2743-2750, 2013

      20 F. Salvatore, "An improved boundary element analysis of cavitating three-dimensional hydrofoils" 2001

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2012-11-05 학술지명변경 한글명 : 대한기계학회 영문 논문집 -> Journal of Mechanical Science and Technology KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2008-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2006-01-19 학술지명변경 한글명 : KSME International Journal -> 대한기계학회 영문 논문집
      외국어명 : KSME International Journal -> Journal of Mechanical Science and Technology
      KCI등재
      2006-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2004-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2001-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      1998-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 1.04 0.51 0.84
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.74 0.66 0.369 0.12
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼