RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      SCOPUS KCI등재

      Study on Mobility of Planetary Rovers and the Development of a Lunar Rover Prototype with Minimized Redundancy of Actuators

      한글로보기

      https://www.riss.kr/link?id=A106102448

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      This paper reviews design elements and presents a mobile platform that has full access of wheel actuation for explicit steering with a minimized number of actuators. For the purpose of exploring lunar surfaces, there are two main design perspectives t...

      This paper reviews design elements and presents a mobile platform that has full access of wheel actuation for explicit steering with a minimized number of actuators. For the purpose of exploring lunar surfaces, there are two main design perspectives to be considered. First, the mobile system should guarantee traversability on rough terrain in microgravity condition. Secondly, the system should be sustainable in the extreme environment of the lunar surface including cosmic rays and excessive temperature changes. One of the potential solutions to improve the reliability of the rover system is to reduce the chance of failure by minimizing the number of electronic components including actuators and their following components and installing them in the rover’s warm-box. We approached the design of the mobile system in the aspect of its kinematics with assumptions of pure-rolling and non-lateral slip. We found a relation that a pair of front and rear wheels on the same side is coupled so that their alignment and rotational speed can be coupled by a mechanism. This allows advantages of explicit steering, minimizing redundancy of actuators and isolating all the electronic components from the effects of external environments. To demonstrate the feasibility of the system, we developed a rover testbed and presented its mobility of explicit steering by experiments of open-loop trajectory traveling.

      더보기

      참고문헌 (Reference)

      1 Patel N., "The ExoMars Rover Locomotion Subsystem" 47 (47): 227-242, 2010

      2 Ishigami G., "Terramechanicsbased Model for Steering Maneuver of Planetary Exploration Rovers on Loose Soil" 24 (24): 233-250, 2007

      3 Helmick D. M., "Slip Compensation for a Mars Rover" 2005

      4 Zhou, F., "Simulations of Mars Rover Traverses" 31 (31): 141-160, 2014

      5 Wertz J. R., "Risk and Reliability" Microcosm Press 753-780, 2011

      6 Delgado, I. R., "Preliminary Assessment of Seals for Dust Mitigation of Mechanical Components for Lunar Surface Systems"

      7 O’Connor, P., "Practical Reliability Engineering" John Wiley & Sons 1-512, 2012

      8 Krebs A., "Performance Optimization of All-Terrain Robots: A 2D Quasi-Static Tool" 2006

      9 Ghotbi B., "Mobility Evaluation of Wheeled Robots on Soft Terrain : Effect of Internal Force Distribution" 100 : 259-282, 2016

      10 Thueer T., "Mobility Evaluation of Wheeled All-Terrain Robots" 58 (58): 508-519, 2010

      1 Patel N., "The ExoMars Rover Locomotion Subsystem" 47 (47): 227-242, 2010

      2 Ishigami G., "Terramechanicsbased Model for Steering Maneuver of Planetary Exploration Rovers on Loose Soil" 24 (24): 233-250, 2007

      3 Helmick D. M., "Slip Compensation for a Mars Rover" 2005

      4 Zhou, F., "Simulations of Mars Rover Traverses" 31 (31): 141-160, 2014

      5 Wertz J. R., "Risk and Reliability" Microcosm Press 753-780, 2011

      6 Delgado, I. R., "Preliminary Assessment of Seals for Dust Mitigation of Mechanical Components for Lunar Surface Systems"

      7 O’Connor, P., "Practical Reliability Engineering" John Wiley & Sons 1-512, 2012

      8 Krebs A., "Performance Optimization of All-Terrain Robots: A 2D Quasi-Static Tool" 2006

      9 Ghotbi B., "Mobility Evaluation of Wheeled Robots on Soft Terrain : Effect of Internal Force Distribution" 100 : 259-282, 2016

      10 Thueer T., "Mobility Evaluation of Wheeled All-Terrain Robots" 58 (58): 508-519, 2010

      11 Lindemann, R. A., "Mars Exploration Rover Mobility Development" 13 (13): 19-26, 2006

      12 Yi J., "Kinematic Modeling and Analysis of Skid-Steered Mobile Robots with Applications to Low-Cost Inertial-Measurement-Unit-Based Motion Estimation" 25 (25): 1087-1097, 2009

      13 Ding L., "Interaction Mechanics Model for Rigid Driving Wheels of Planetary Rovers Moving on Sandy Terrain with Consideration of Multiple Physical Effects" 32 (32): 827-859, 2015

      14 Ding L., "Experimental Study and Analysis on Driving Wheels’Performance for Planetary Exploration Rovers Moving in Deformable Soil" 48 (48): 27-45, 2011

      15 Shamah B., "Experimental Comparison of Skid Steering vs. Explicit Steering for Wheeled Mobile Robot" Robotics Institute, Carnegie Mellon University 1999

      16 Sutoh M., "Evaluation of Influence of Surface Shape of Locomotion Mechanism on Traveling Performance of Planetary Rovers" 2012

      17 Yoshida K., "Development and Field Testing of MoonRaker: a Four-Wheel Rover in Minimal Design" 2013

      18 Bartlett P., "Design of the Scarab Rover for Mobility & Drilling in the Lunar Cold Traps" 2008

      19 Seo M, "Approaches for the Design of Mobile Platforms with Mobility, Economic Feasibility, and Robustness in Lunar Environments" 2017

      20 Ghotbi B., "A Novel Concept for Analysis and Performance Evaluation of Wheeled Rovers" 83 : 137-151, 2015

      21 Papadopoulos E, "A New Measure of Tipover Stability Margin for Mobile Manipulators" 1996

      22 Ju G., "A Feasibility Study on Korean Lunar Exploration Mission" 2008

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2013-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2008-06-23 학회명변경 영문명 : Korean Society Of Precision Engineering -> Korean Society for Precision Engineering KCI등재
      2008-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2006-07-07 학술지명변경 외국어명 : 미등록 -> Journal of the Korean Society for Precision Engineering KCI등재
      2006-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2004-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2001-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      1998-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.26 0.26 0.26
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.24 0.22 0.449 0.12
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼