RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCOPUS

      Experimental Verification on Dielectric Breakdown Strength Using Individual and Multiple Nanoparticles in Polyvinyl Chloride

      한글로보기

      https://www.riss.kr/link?id=A106909148

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Nanoparticles distribution techniques inside electrical insulation materials is an essential technology for improving electric and dielectric behavior and maintaining the reliability of industrial applications. In this paper, it has been investigated ...

      Nanoparticles distribution techniques inside electrical insulation materials is an essential technology for improving electric and dielectric behavior and maintaining the reliability of industrial applications. In this paper, it has been investigated on dielectric strength of polyvinyl chloride nanocomposites materials based on distribution of individual and multiple nanoparticles techniques under uniform and non-uniform electric fields. It has been succeeded to enhance and control the dielectric strength based on the arrangement of multiple nanoparticles inside polyvinyl chloride materials under uniform and nonuniform applied electric fi elds. Moreover, optimal types and concentrations of individual and multiple nanoparticles have been specified for dielectric strength degradation under variant thermal conditions (20–80 °C). Trends of using individual and multiple nanoparticles have been depicted the industrial features against traditional industrial materials.

      더보기

      참고문헌 (Reference)

      1 T. Lizuka, "Voltage endurance characteristics of epoxy/silica nanocomposites" 94 (94): 65-73, 2011

      2 A. Thabet, "Thermal experimental verifi cation on eff ects of nanoparticles for enhancing electric and dielectric performance of polyvinyl chloride" 89 : 28-33, 2016

      3 L. Zhang, "Thermal and electrical conductivity enhancement of graphite nanoplatelets on form-stable polyethylene glycol/polymethyl methacrylate composite phase change materials" 39 (39): 294-302, 2012

      4 A. Thabet, "Theoretical analysis for eff ects of nanoparticles on dielectric characterization of electrical industrial materials" 99 (99): 487-493, 2017

      5 A. Thabet, "The eff ect of cost-fewer nanoparticles on the electrical properties of polyvinyl chloride" 99 (99): 625-631, 2017

      6 Z. Li, "The Role of nano and micro particles on partial discharge and breakdown strength in epoxy composites" 18 (18): 675-681, 2011

      7 L. W. Tang, "Synthesis of new nanocrystal-polymer nanocomposite as the electron acceptor in polymer bulk heterojunction solar cells" 46 (46): 634-642, 2010

      8 H. N. Azlinaa, "Synthesis of SiO 2 nanostructures using sol-gel method" 129 (129): 842-844, 2015

      9 C.J. Brinker, "Sol-Gel Science: The Physics Chemistry of Sol-Gel Processing, An Imprint of Elsevier" Academic Press, Inc 1990

      10 L. A. Dissado, "Simulation of electrical ageing in insulating polymers using a quantitative physical model" 41 (41): 1-5, 2008

      1 T. Lizuka, "Voltage endurance characteristics of epoxy/silica nanocomposites" 94 (94): 65-73, 2011

      2 A. Thabet, "Thermal experimental verifi cation on eff ects of nanoparticles for enhancing electric and dielectric performance of polyvinyl chloride" 89 : 28-33, 2016

      3 L. Zhang, "Thermal and electrical conductivity enhancement of graphite nanoplatelets on form-stable polyethylene glycol/polymethyl methacrylate composite phase change materials" 39 (39): 294-302, 2012

      4 A. Thabet, "Theoretical analysis for eff ects of nanoparticles on dielectric characterization of electrical industrial materials" 99 (99): 487-493, 2017

      5 A. Thabet, "The eff ect of cost-fewer nanoparticles on the electrical properties of polyvinyl chloride" 99 (99): 625-631, 2017

      6 Z. Li, "The Role of nano and micro particles on partial discharge and breakdown strength in epoxy composites" 18 (18): 675-681, 2011

      7 L. W. Tang, "Synthesis of new nanocrystal-polymer nanocomposite as the electron acceptor in polymer bulk heterojunction solar cells" 46 (46): 634-642, 2010

      8 H. N. Azlinaa, "Synthesis of SiO 2 nanostructures using sol-gel method" 129 (129): 842-844, 2015

      9 C.J. Brinker, "Sol-Gel Science: The Physics Chemistry of Sol-Gel Processing, An Imprint of Elsevier" Academic Press, Inc 1990

      10 L. A. Dissado, "Simulation of electrical ageing in insulating polymers using a quantitative physical model" 41 (41): 1-5, 2008

      11 L. A. Dissado, "Simulation of DC electrical ageing in insulating polymer fi lms" 17 (17): 896-903, 2010

      12 L. Zhe, "Role of nano-fi ller on partial discharge resistance and dielectric breakdown strength of micro-A1203/epoxy composites" 1 : 753-756, 2009

      13 G. Polizos, "Properties of a nanodielectric cryogenic resin" 96 (96): 152903-, 2010

      14 H. Cong, "Polymer—inorganic nanocomposite membranes for gas separation" 55 (55): 281-291, 2007

      15 K. Y. Lau, "Polymer nanocomposites in high voltage electrical insulation perspective : a review" 6 (6): 58-69, 2011

      16 T. Tanaka, "Polymer nanocomposites as dielectrics and electrical insulation-perspectives for processing technologies, material characterization and future applications" 11 (11): 763-784, 2004

      17 W. A. Izzati, "Partial discharge characteristics of polymer nanocomposite materials in electrical insulation:a review of sample preparation techniques, analysis methods, potential applications, and future trends" 2014 : 1-14, 2014

      18 A. Thabet, "Optimizing dielectric characteristics of electrical materials using multi-nanoparticles technique" 1 : 220-225, 2017

      19 M. Todd, "Molecular basis of the interphase dielectric properties of microelectronic and optoelectronic packaging materials" 26 (26): 667-672, 2003

      20 A. Kutvonen, "Influence of nanoparticle size, loading, and shape on themechanical properties of polymer nanocomposites" 137 (137): 1-8, 2012

      21 L. Flandin, "Infl uences of degree of curing and presence of inorganic fi llers on the ultimate electrical properties of epoxy-based composites : experiment and simulation" 8 (8): 44-55, 2005

      22 J. Kaur, "Infl uence of polymer matrix crystallinity on nanocomposite morphology and properties" 52 (52): 4337-4344, 2011

      23 A. Thabet, "Improvement of surface energy properties of PVC nanocomposites for enhancing electrical applications" 110 : 78-83, 2017

      24 L. Bois, "Growth of ordered silver nanoparticles in silica fi lm mesostructured with a triblock copolymer PEO–PPO–PEO" 182 (182): 1700-1707, 2009

      25 A. Thabet, "Experimental verifi cation for improving dielectric strength of polymers by using clay nanoparticles" 13 (13): 182-190, 2015

      26 A. Thabet, "Experimental study for dielectric strength of new nanocomposite polyethylene industrial materials" 3 (3): 353-364, 2012

      27 A. Thabet, "Experimental enhancement for dielectric strength of polyethylene insulation materials using cost-fewer nanoparticles" 64 : 469-475, 2015

      28 A. Thabet, "Experimental dielectric measurements for cost-fewer polyvinyl chloride nanocomposites" 5 (5): 13-22, 2015

      29 A. Thabet, "Experimental control of dielectric loss behavior of polyvinyl chloride nanocomposites under thermal conditions" 1 : 12-17, 2017

      30 S. Alapati, "Electrical treeing and the associated PD characteristics in LDPE nanocomposites" 19 (19): 697-704, 2012

      31 N. R. R. Royan, "Effect of acid- and ultraviolet/ozonolysis-treated MWCNTs on the electrical and mechanical properties of epoxy nanocomposites as bipolar plate applications" 2013 : 1-8, 2013

      32 K. K. Karkkainen, "Eff ective permittivity of mixtures : numerical validation by the FDTD method" 38 (38): 1303-1308, 2000

      33 T. Tanaka, "Dielectric properties of XLPE/Si02 nanocomposites based on CIGRE WG DI.24 cooperative test results" 18 (18): 1482-1517, 2011

      34 T. Tanaka, "Dielectric nanocomposites with insulating properties" 12 (12): 914-928, 2005

      35 P. Maity, "Degradation of polymer dielectrics with nanometric metal-oxide fi llers due to surface discharges" 15 (15): 52-62, 2008

      36 A. A. Ebnalwaled, "Controlling the optical constants of PVC nanocomposite fi lms for optoelectronic applications" 220 : 374-383, 2016

      37 N. Tagami, "Comparison of dielectric properties between epoxy composites with nanosized clay fi llers modifi ed by primary amine and tertiary amine" 17 (17): 214-220, 2010

      38 M. Todd, "Characterizing the interphase dielectric constant of polymer composite materials : eff ect of chemical coupling agents" 94 (94): 4551-4557, 2003

      39 A. Krivda, "Characterization of epoxy microcomposite and nanocomposite materials for power engineering applications" 28 (28): 38-51, 2012

      40 Y. Yi, "Analytical approximation of the twodimensional percolation threshold for fields of overlapping ellipses" 66 (66): 066130-1-066130-8, 2002

      41 T. Tanaka, "Advances in nanodielectric materials over the past 50 years" 29 (29): 10-23, 2013

      42 B. Reddy, "Advances in Nanocomposites—Synthesis, Characterization and Industrial Applications" Intech Open 323-340, 2011

      43 O. Gouda, "A simulation model for calculating the dielectric properties of nano-composite materials and comprehensive interphase approach" 1 : 151-156, 2010

      44 A. D. G. D. Mauro, "A simple optical model for the swelling evaluation in polymer nanocomposites" 2009 : 1-6, 2009

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2011-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2009-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2006-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2005-05-30 학회명변경 영문명 : 미등록 -> The Korean Institute of Electrical and Electronic Material Engineers KCI등재후보
      2005-05-30 학술지명변경 한글명 : Transactions on Electrical and Electroni -> Transactions on Electrical and Electronic Materials KCI등재후보
      2005-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2003-01-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.08 0.08 0.1
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.1 0.11 0.239 0.07
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼