RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI우수등재

      딥러닝을 이용한 약물 화학 구조 예측

      한글로보기

      https://www.riss.kr/link?id=A107273608

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Numerous computer-based methods have been investigated in attempts to reduce the time and cost of drug development. In particular, with the recent development of deep learning techniques, various generation models for generating the chemical formulas ...

      Numerous computer-based methods have been investigated in attempts to reduce the time and cost of drug development. In particular, with the recent development of deep learning techniques, various generation models for generating the chemical formulas of candidate compounds and reinforcement learning models to generate chemical formulas that satisfy specific conditions have been presented. In this paper, we propose a reinforcement learning model that exploits predicted binding affinity information between specific proteins and generated compounds. More specifically, the generative model used in this paper is Stack-RNN, and reinforcement learning is implemented by using Stack-RNN as a policy to ensure that the generated formula has specific chemical properties and high binding affinity with specific proteins. The proposed model generates paper, we generated the chemical formulas of compounds that are similar to three anti-cancer drugs (Sorafenib, Sunitinib, and Dasatinib) by using the target protein information of these three anti-cancer drugs.

      더보기

      참고문헌 (Reference)

      1 서상민, "딥러닝을 이용한 화합물-단백질 상호작용 예측" 한국정보과학회 46 (46): 1054-1060, 2019

      2 B. K. Shoichet, "Virtual screening of chemical libraries" 432 : 862-865, 2004

      3 N. Jaques, "Tuning recurrent neural networks with reinforcement learning"

      4 M. Manica, "Toward explainable anticancer compound sensitivity prediction via multimodal attention-based convolutional encoders" 2019

      5 H. Chen, "The rise of deep learning in drug discovery" 23 : 1241-1250, 2018

      6 A. P. Bento, "The ChEMBL bioactivity database: an update" 42 : D1083-D1090, 2014

      7 T. Cheng, "Structure-based virtual screening for drug discovery: a problem-centric review" 14 : 133-141, 2012

      8 G. Jinesh G, "Smac mimetic enables the anticancer action of BCG‐stimulated neutrophils through TNF‐α but not through TRAIL and FasL" 92 : 233-244, 2012

      9 R. J. Williams, "Simple statistical gradient-following algorithms for connectionist reinforcement learning" 8 : 229-256, 1992

      10 L. Yu, "Seqgan:Sequence generative adversarial nets with policy gradient" 2017

      1 서상민, "딥러닝을 이용한 화합물-단백질 상호작용 예측" 한국정보과학회 46 (46): 1054-1060, 2019

      2 B. K. Shoichet, "Virtual screening of chemical libraries" 432 : 862-865, 2004

      3 N. Jaques, "Tuning recurrent neural networks with reinforcement learning"

      4 M. Manica, "Toward explainable anticancer compound sensitivity prediction via multimodal attention-based convolutional encoders" 2019

      5 H. Chen, "The rise of deep learning in drug discovery" 23 : 1241-1250, 2018

      6 A. P. Bento, "The ChEMBL bioactivity database: an update" 42 : D1083-D1090, 2014

      7 T. Cheng, "Structure-based virtual screening for drug discovery: a problem-centric review" 14 : 133-141, 2012

      8 G. Jinesh G, "Smac mimetic enables the anticancer action of BCG‐stimulated neutrophils through TNF‐α but not through TRAIL and FasL" 92 : 233-244, 2012

      9 R. J. Williams, "Simple statistical gradient-following algorithms for connectionist reinforcement learning" 8 : 229-256, 1992

      10 L. Yu, "Seqgan:Sequence generative adversarial nets with policy gradient" 2017

      11 D. P. Kingma, "Semi-supervised learning with deep generative models" 3581-3589, 2014

      12 D. Weininger, "SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules" 28 : 31-36, 1988

      13 T. Scior, "Recognizing pitfalls in virtual screening: a critical review" 52 : 867-881, 2012

      14 Y.-Y. Li, "Pim-3, a proto-oncogene with serine/threonine kinase activity, is aberrantly expressed in human pancreatic cancer and phosphorylates bad to block bad-mediated apoptosis in human pancreatic cancer cell lines" 66 : 6741-6747, 2006

      15 J. Born, "PaccMannRL:Designing anticancer drugs from transcriptomic data via reinforcement learning"

      16 J. Lim, "Molecular generative model based on conditional variational autoencoder for de novo molecular design" 10 : 1-9, 2018

      17 M. Olivecrona, "Molecular de-novo design through deep reinforcement learning" 9 : 48-, 2017

      18 S. Hochreiter, "Long short-term memory" 9 : 1735-1780, 1997

      19 A. Joulin, "Inferring algorithmic patterns with stack-augmented recurrent nets" 190-198, 2015

      20 W. K. Chan, "GLASS: a comprehensive database for experimentally validated GPCR-ligand associations" 31 : 3035-3042, 2015

      21 C. A. Lipinski, "Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings" 23 : 3-25, 1997

      22 R. Erber, "EphB4 controls blood vascular morphogenesis during postnatal angiogenesis" 25 : 628-641, 2006

      23 C. Knox, "DrugBank 3.0: a comprehensive resource for ‘omics’ research on drugs" 39 : D1035-D1041, 2010

      24 M. Popova, "Deep reinforcement learning for de novo drug design" 4 : eaap7885-, 2018

      25 J. Reymond, "Chemical space as a source for new drugs" 1 (1): 30-38, 2010

      26 M. K. Gilson, "BindingDB in 2015: a public database for medicinal chemistry, computational chemistry and systems pharmacology" 44 : D1045-D1053, 2016

      27 R. Gómez-Bombarelli, "Automatic chemical design using a data-driven continuous representation of molecules" 4 : 268-276, 2018

      28 P. Baldi, "Autoencoders, unsupervised learning, and deep architectures" 37-49, 2012

      29 D. P. Kingma, "Auto-encoding variational bayes"

      30 C. Fujii, "Aberrant expression of serine/threonine kinase Pim‐3 in hepatocellular carcinoma development and its role in the proliferation of human hepatoma cell lines" 114 : 209-218, 2005

      31 X. Lin, "A review on applications of computational methods in drug screening and design" 25 : 1375-, 2020

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2021 평가예정 계속평가 신청대상 (등재유지)
      2016-01-01 평가 우수등재학술지 선정 (계속평가)
      2015-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2002-01-01 평가 학술지 통합 (등재유지) KCI등재
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.19 0.19 0.19
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.2 0.18 0.373 0.07
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼