RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCIE SCOPUS

      Rapid Prediction of Deflections in Multi-span Continuous Composite Bridges using Neural Networks

      한글로보기

      https://www.riss.kr/link?id=A104088023

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      This paper proposes closed form expressions for the rapid prediction of deflections in steel-concrete composite bridges of large number of spans subjected to service load. The proposed expressions take into account shear lag effect, flexibility of she...

      This paper proposes closed form expressions for the rapid prediction of deflections in steel-concrete composite bridges of large number of spans subjected to service load. The proposed expressions take into account shear lag effect, flexibility of shear connectors and cracking in concrete slabs. Three separate neural networks have been developed for right exterior span, left exterior span and interior spans. The closed form expressions have been obtained from the neural networks developed in the study. The training, validating and testing data sets for the neural networks are generated using finite element software ABAQUS. The proposed expressions have been validated for number of bridges and the errors are found to be small for practical purposes. Sensitivity studies have been carried out using the proposed expressions to evaluate the suitability of input parameters. The use of the proposed expressions requires a computational effort that is fraction of that required for the finite element analysis, therefore, can be used for rapid prediction of deflection for everyday design.

      더보기

      참고문헌 (Reference)

      1 Tarhini, K., "Wheel load distribution in I-girder highway bridges" 118 (118): 1285-1294, 1992

      2 Kwak, H. G., "Time-dependent behavior of composite beams with flexible connectors" 191 (191): 3751-3772, 2002

      3 Baskar, K., "Steel-concrete composite plate girders subject to combined shear and bending" 59 (59): 531-557, 2003

      4 Nie, J., "Steel-concrete composite beams considering shear slip effects" 129 (129): 495-506, 2003

      5 Faella, C., "Steel and concrete composite beams with flexible shear connection:“exact” analytical expression of the stiffness matrix and applications" 80 (80): 1001-1009, 2002

      6 Teraszkiewicz, J. S., "Static and fatigue behavior of simply supported and continuous composite beams of steel and concrete" University of London 1967

      7 Dezi, L., "Simplified creep analysis of composite beams with flexible connectors" 119 (119): 1484-1497, 1993

      8 Ollgaard, J. G., "Shear strength of stud connectors in lightweight and normal-weight concrete" 8 (8): 55-64, 1971

      9 Uddin, M. A., "Response prediction of offshore floating structure using artificial neural network" 14 (14): 186-189, 2012

      10 Umesh Pendharkar, "Rapid prediction of long-term deflections in composite frames" 국제구조공학회 18 (18): 547-563, 2015

      1 Tarhini, K., "Wheel load distribution in I-girder highway bridges" 118 (118): 1285-1294, 1992

      2 Kwak, H. G., "Time-dependent behavior of composite beams with flexible connectors" 191 (191): 3751-3772, 2002

      3 Baskar, K., "Steel-concrete composite plate girders subject to combined shear and bending" 59 (59): 531-557, 2003

      4 Nie, J., "Steel-concrete composite beams considering shear slip effects" 129 (129): 495-506, 2003

      5 Faella, C., "Steel and concrete composite beams with flexible shear connection:“exact” analytical expression of the stiffness matrix and applications" 80 (80): 1001-1009, 2002

      6 Teraszkiewicz, J. S., "Static and fatigue behavior of simply supported and continuous composite beams of steel and concrete" University of London 1967

      7 Dezi, L., "Simplified creep analysis of composite beams with flexible connectors" 119 (119): 1484-1497, 1993

      8 Ollgaard, J. G., "Shear strength of stud connectors in lightweight and normal-weight concrete" 8 (8): 55-64, 1971

      9 Uddin, M. A., "Response prediction of offshore floating structure using artificial neural network" 14 (14): 186-189, 2012

      10 Umesh Pendharkar, "Rapid prediction of long-term deflections in composite frames" 국제구조공학회 18 (18): 547-563, 2015

      11 Umesh Pendharkar, "Prediction of moments in composite frames considering cracking and time effects using neural network models" 국제구조공학회 39 (39): 267-285, 2011

      12 MATLAB 7.8, "Neural networks toolbox user’s guide"

      13 Tadesse, Z., "Neural networks for prediction of deflection in composite bridges" 68 (68): 138-149, 2012

      14 Umesh Pendharkar, "Neural networks for inelastic mid-span deflections in continuous composite beams" 국제구조공학회 36 (36): 165-179, 2010

      15 Chaudhary, S., "Neural networks for deflections in continuous composite beams considering concrete cracking" 38 (38): 205-221, 2014

      16 Pendharkar, U., "Neural network for bending moment in continuous composite beams considering cracking and time effects in concrete" 29 (29): 2069-2079, 2007

      17 Dai, J. G., "Modeling of tension stiffening behavior in FRP-strengthened RC members based on rigid body spring networks" 27 (27): 406-718, 2012

      18 Ayoub, A., "Mixed formulation of nonlinear steel-concrete composite beam element" 126 (126): 371-381, 2000

      19 김두기, "Iterative neural network strategy for static model identification of an FRP deck" 국제구조공학회 9 (9): 445-455, 2009

      20 Min, J., "Impedance-based structural health monitoring incorporating neural network technique for identification of damage type and severity" 39 : 210-220, 2012

      21 Chaudhary, S., "Hybrid procedure for cracking and time-dependent effects in composite frames at service load" 133 (133): 166-175, 2007

      22 Kaloop, M. R., "GPS-structural health monitoring of a long span bridge using neural network adaptive filter" 16 (16): 7-14, 2014

      23 Baskar, K., "Finite-Element Analysis of Steel-Concrete Composite Plate Girder" 128 (128): 1158-1168, 2002

      24 Patel, K. A., "Explicit expression for effective moment of inertia of RC Beams" 12 (12): 542-560, 2015

      25 Chapman, J. C., "Experiments on composite beams" 42 (42): 369-383, 1964

      26 Chiewanichakorn, M., "Effective flange width definition for steelconcrete composite bridge girder" 130 (130): 2016-2031, 2004

      27 Mabsout, M., "Effect of multilanes on wheel load distribution in steel girder bridges" 4 (4): 99-106, 1999

      28 Jasim, N. A., "Deflections of partially composite continuous beams: A simple approach" 49 (49): 291-301, 1999

      29 Jasim, N. A., "Deflections of partially composite beams with linear connector density" 49 (49): 241-254, 1999

      30 Wang, Y. C., "Deflection of steel-concrete composite beams with partial shear interaction" 124 (124): 1159-1165, 1998

      31 Chaudhary, S., "Control of creep and shrinkage effects in steel concrete composite bridges with precast decks" 14 (14): 336-345, 2009

      32 Lalit Kumar Varshney, "Control of Time-dependent Effects in Steel-concrete Composite Frames" 한국강구조학회 13 (13): 589-606, 2013

      33 Girhammar, U. A., "Composite beam-columns with interlayer slip-exact analysis" 119 (119): 1265-1282, 1993

      34 BS 5400, "Code of practice for design of composite bridges, BSI Part 5 Steel, concrete and composite bridges"

      35 Gupta, R. K., "Closed form solution for deflection of flexible composite bridges" 51 : 75-83, 2013

      36 Chaudhary, S., "Bending moment prediction for continuous composite beams by neural networks" 10 (10): 439-454, 2007

      37 Mohammadhassani, M., "Application of the ANFIS model in deflection prediction of concrete deep beam" 45 (45): 319-332, 2013

      38 Mohammad Mohammadhassani, "Application of artificial neural networks (ANNs) and linear regressions (LR) to predict the deflection of concrete deep beams" 국제구조공학회 11 (11): 237-252, 2013

      39 A.K. Nagpal, "An analytical-numerical procedure for cracking and time-dependent effects in continuous composite beams under service load" 국제구조공학회 7 (7): 219-240, 2007

      40 Chang, S., "Active control of building structure using lattice probabilistic neural network based on learning algorithm" 3 (3): 75-82, 2012

      41 ABAQUS, "ABAQUS Version 6.10" Hibbitt, Karlsson and Sorensen, Inc 2011

      42 Sedlacek, G., "A simplified method for the determination of the effective width due to shear lag effects" 24 (24): 155-182, 1993

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2010-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2009-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2008-01-01 평가 등재후보학술지 유지 (등재후보2차) KCI등재후보
      2007-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2005-01-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.62 0.27 0.55
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.5 0.45 0.366 0.03
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼