RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      SCOPUS SCIE

      Friction of chemically and topographically modified Si (100) surfaces

      한글로보기

      https://www.riss.kr/link?id=A107560475

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      <P><B>Abstract</B></P><P>Silicon (Si (100)) is a typically used material in micro/nano-scale devices, such as micro/nano-electromechanical systems (MEMS/NEMS). However, Si (100) does not have good tribological properties ...

      <P><B>Abstract</B></P><P>Silicon (Si (100)) is a typically used material in micro/nano-scale devices, such as micro/nano-electromechanical systems (MEMS/NEMS). However, Si (100) does not have good tribological properties and hence its surface needs to be treated either chemically or topographically to enhance its tribological performance. In this paper, the micro/nano-frictional property of chemically and topographically modified Si (100) surfaces was studied. Chemically modified surfaces of Si (100) include coating of diamond-like carbon (DLC) films (two different thicknesses) and two self-assembled monolayers (SAMs). Topographically modified surfaces of Si (100) include nano-patterned poly(methyl methacrylate) (PMMA) on silicon wafer, fabricated by the process of a capillarity-directed soft lithographic technique. At the nano-scale, friction was measured using an atomic force microscope (AFM) and at the micro-scale it was measured using a ball-on-flat type micro-tribotester. Results showed that at both nano- and micro-scales, the modified Si (100) surfaces exhibited enhanced friction behavior when compared to bare Si (100) surfaces. The improved nano-friction behavior of the modified surfaces was attributed to their lower intrinsic adhesion and reduced real area of contact. In the case of nano-patterns, the physical (geometrical) reduction in contact area contributed in decreasing their friction. At micro-scale, wear was observed in the test samples (except in the case of SAMs), which influenced their friction behavior. Further, as a novel bio-mimetic approach for tribological application at micro-scale, the surface topography of natural leaves of Lotus and Colocasia were replicated by capillary force lithography using two different molding techniques. Interestingly, these bio-mimetically engineered surfaces exhibited superior micro-friction behavior. Indeed, this could be the first bio-mimetic approach of creating effective tribological materials by the direct replication of natural surfaces.</P>

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼