RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      주 객체 위치 검출을 위한 Grad-CAM 기반의 딥러닝 네트워크 = Grad-CAM based deep learning network for location detection of the main object

      한글로보기

      https://www.riss.kr/link?id=A107283790

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      In this paper, we propose an optimal deep learning network architecture for main object location detection through weak supervised learning. The proposed network adds convolution blocks for improving the localization accuracy of the main object through weakly-supervised learning. The additional deep learning network consists of five additional blocks that add a composite product layer based on VGG-16. And the proposed network was trained by the method of weakly-supervised learning that does not require real location information for objects. In addition, Grad-CAM to compensate for the weakness of GAP in CAM, which is one of weak supervised learning methods, was used. The proposed network was tested through the CUB-200-2011 data set, we could obtain 50.13% in top-1 localization error. Also, the proposed network shows higher accuracy in detecting the main object than the existing method.
      번역하기

      In this paper, we propose an optimal deep learning network architecture for main object location detection through weak supervised learning. The proposed network adds convolution blocks for improving the localization accuracy of the main object throug...

      In this paper, we propose an optimal deep learning network architecture for main object location detection through weak supervised learning. The proposed network adds convolution blocks for improving the localization accuracy of the main object through weakly-supervised learning. The additional deep learning network consists of five additional blocks that add a composite product layer based on VGG-16. And the proposed network was trained by the method of weakly-supervised learning that does not require real location information for objects. In addition, Grad-CAM to compensate for the weakness of GAP in CAM, which is one of weak supervised learning methods, was used. The proposed network was tested through the CUB-200-2011 data set, we could obtain 50.13% in top-1 localization error. Also, the proposed network shows higher accuracy in detecting the main object than the existing method.

      더보기

      참고문헌 (Reference)

      1 K. Simonyan, "Very Deep Convolutional Networks for Large-Scale Image Recognition"

      2 C. Wah, "The Caltech-UCSD Birds-200-2011 Dataset"

      3 W. Liu, "SSD: Single Shot MultiBox Detector"

      4 Y. Wei, "Object region mining with adversarial erasing: A simple classification to semantic segmentation approach"

      5 M. Lin, "Network In Network"

      6 B. Zhou, "Learning Deep Features for Discriminative Localization"

      7 O. Russakovsky, "ImageNet Large Scale Visual Recognition Challenge"

      8 K. K. Singh, "Hide-and-Seek: Forcing a network to be meticulous for weakly-supervised object and action localization"

      9 R. R. Selvaraju, "Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization"

      10 J. Lee, "FickleNet:Weakly and Semi-supervised Semantic Image Segmentation using Stochastic Inference"

      1 K. Simonyan, "Very Deep Convolutional Networks for Large-Scale Image Recognition"

      2 C. Wah, "The Caltech-UCSD Birds-200-2011 Dataset"

      3 W. Liu, "SSD: Single Shot MultiBox Detector"

      4 Y. Wei, "Object region mining with adversarial erasing: A simple classification to semantic segmentation approach"

      5 M. Lin, "Network In Network"

      6 B. Zhou, "Learning Deep Features for Discriminative Localization"

      7 O. Russakovsky, "ImageNet Large Scale Visual Recognition Challenge"

      8 K. K. Singh, "Hide-and-Seek: Forcing a network to be meticulous for weakly-supervised object and action localization"

      9 R. R. Selvaraju, "Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization"

      10 J. Lee, "FickleNet:Weakly and Semi-supervised Semantic Image Segmentation using Stochastic Inference"

      11 S. Ren, "Faster R-CNN:towards real-time object detection with region proposal networks"

      12 K. He, "Deep Residual Learning for Image Recognition"

      13 X. Zhang, "Adversarial complementary learning for weakly supervised object localization"

      14 J. Choe, "ADL:Attention-based Dropout Layer for Weakly Supervised Object Localization"

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2027 평가예정 재인증평가 신청대상 (재인증)
      2021-01-01 평가 등재학술지 유지 (재인증) KCI등재
      2018-01-01 평가 등재학술지 선정 (계속평가) KCI등재
      2017-12-01 평가 등재후보로 하락 (계속평가) KCI등재후보
      2013-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2011-11-23 학술지명변경 외국어명 : THE JOURNAL OF The KOREAN Institute Of Maritime information & Communication Science -> Journal of the Korea Institute Of Information and Communication Engineering KCI등재
      2011-11-16 학회명변경 영문명 : International Journal of Information and Communication Engineering(IJICE) -> The Korea Institute of Information and Communication Engineering KCI등재
      2011-11-14 학회명변경 한글명 : 한국해양정보통신학회 -> 한국정보통신학회
      영문명 : 미등록 -> International Journal of Information and Communication Engineering(IJICE)
      KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2008-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2005-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2004-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2002-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.23 0.23 0.27
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.24 0.22 0.424 0.11
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼