RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCIE SCOPUS

      Experimental and numerical analysis for predicting the dehumidification performance of a hollow fiber type membrane using the log mean pressure difference method

      한글로보기

      https://www.riss.kr/link?id=A105941617

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      The membrane-based dehumidification method is economical and environmentally friendly. Furthermore, the hollow fiber type membrane (HFM) has superior dehumidification performance because it has a large contact area. Despite many advantages, the membranebased dehumidification method is still in the research and development stage, its use in the field is limited, and research on technology to integrate systems is insufficient. In this study, the relationships between parameters affecting dehumidification performance in terms of dehumidification rate and dehumidification amount were compared in order to apply the membrane-based dehumidification system in the field. The experimental and simulation values were compared in order to find a correlation with the dehumidification amount (or water fraction). Dehumidification performance increased when dry-bulb temperature, relative humidity, and log mean temperature difference (LMPD) were increased. The results of this study can be used to predict system performance in advance when a membrane-based dehumidification system is applied in the field.
      번역하기

      The membrane-based dehumidification method is economical and environmentally friendly. Furthermore, the hollow fiber type membrane (HFM) has superior dehumidification performance because it has a large contact area. Despite many advantages, the membra...

      The membrane-based dehumidification method is economical and environmentally friendly. Furthermore, the hollow fiber type membrane (HFM) has superior dehumidification performance because it has a large contact area. Despite many advantages, the membranebased dehumidification method is still in the research and development stage, its use in the field is limited, and research on technology to integrate systems is insufficient. In this study, the relationships between parameters affecting dehumidification performance in terms of dehumidification rate and dehumidification amount were compared in order to apply the membrane-based dehumidification system in the field. The experimental and simulation values were compared in order to find a correlation with the dehumidification amount (or water fraction). Dehumidification performance increased when dry-bulb temperature, relative humidity, and log mean temperature difference (LMPD) were increased. The results of this study can be used to predict system performance in advance when a membrane-based dehumidification system is applied in the field.

      더보기

      참고문헌 (Reference)

      1 A. Fick, "Ueber diffusion" 94 : 59-86, 1855

      2 N. B. Houreh, "Three-dimensional CFD modeling of a planar membrane humidifier for PEM fuel cell systems" 39 (39): 14969-14979, 2014

      3 L. Schoen, "Thermal environmental conditions for human occupancy, ANSI/ASHRAE Standard, 55-2013"

      4 W.-P. Breugem, "The effective viscosity of a channel-type porous medium" 19 (19): 103104-103104-8, 2007

      5 X. N. Wu, "Review on substrate of solid desiccant dehumidification system" 82 : 3236-3249, 2017

      6 H.-X. Fu, "Review of the impact of liquid desiccant dehumidification on indoor air quality" 116 : 158-172, 2017

      7 F. Manzano-Agugliaro, "Review of bioclimatic architecture strategies for achieving thermal comfort" 49 : 736-755, 2015

      8 T. D. Bui, "On the theoretical and experimental energy efficiency analyses of a vacuum-based dehumidification membrane" 539 : 76-87, 2017

      9 M. Musa, "Novel evaporative cooling systems for building applications" The University of Nottingham 2009

      10 C. Pengilley, "Membranes for gas separation" University of Bath 2015

      1 A. Fick, "Ueber diffusion" 94 : 59-86, 1855

      2 N. B. Houreh, "Three-dimensional CFD modeling of a planar membrane humidifier for PEM fuel cell systems" 39 (39): 14969-14979, 2014

      3 L. Schoen, "Thermal environmental conditions for human occupancy, ANSI/ASHRAE Standard, 55-2013"

      4 W.-P. Breugem, "The effective viscosity of a channel-type porous medium" 19 (19): 103104-103104-8, 2007

      5 X. N. Wu, "Review on substrate of solid desiccant dehumidification system" 82 : 3236-3249, 2017

      6 H.-X. Fu, "Review of the impact of liquid desiccant dehumidification on indoor air quality" 116 : 158-172, 2017

      7 F. Manzano-Agugliaro, "Review of bioclimatic architecture strategies for achieving thermal comfort" 49 : 736-755, 2015

      8 T. D. Bui, "On the theoretical and experimental energy efficiency analyses of a vacuum-based dehumidification membrane" 539 : 76-87, 2017

      9 M. Musa, "Novel evaporative cooling systems for building applications" The University of Nottingham 2009

      10 C. Pengilley, "Membranes for gas separation" University of Bath 2015

      11 M. Qu, "Isothermal membrane-based air dehumidification: A comprehensive review" 82 : 4060-4069, 2017

      12 J.-G. Kim, "Indoor thermal environment of temporary mobile energy shelter houses (MeSHs) in South Korea" 8 (8): 11139-11152, 2015

      13 X. Cheng, "Hybrid membranes for pervaporation separations" 541 : 329-346, 2017

      14 T. D. Bui, "Experimental and modeling analysis of membrane-based air dehumidification" 144 : 114-122, 2015

      15 E. Afshari, "Effects of the cell thermal behavior and water phase change on a proton exchange membrane fuel cell performance" 51 (51): 655-662, 2010

      16 C. F. Wan, "Design and fabrication of hollow fiber membrane modules" 538 : 96-107, 2017

      17 M. Sahlot, "Desiccant cooling systems: A review" 11 (11): 489-505, 2016

      18 A. Seltzer, "Conceptual design of supercritical O2-based PC boiler final report" Foster Wheeler Power Group, Inc 2006

      19 P. Cyklis, "Application of porous media flow model for the regenerator fluidised bed simulation" 9 : 229-236, 2017

      20 M. Sultan, "An overview of solid desiccant dehumidification and air conditioning systems" 46 : 16-29, 2015

      21 ANSYS, "ANSYS FLUENT user’s guide, release 18.1"

      22 O. Amer, "A review of evaporative cooling technologies" 6 (6): 111-117, 2015

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2012-11-05 학술지명변경 한글명 : 대한기계학회 영문 논문집 -> Journal of Mechanical Science and Technology KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2008-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2006-01-19 학술지명변경 한글명 : KSME International Journal -> 대한기계학회 영문 논문집
      외국어명 : KSME International Journal -> Journal of Mechanical Science and Technology
      KCI등재
      2006-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2004-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2001-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      1998-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 1.04 0.51 0.84
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.74 0.66 0.369 0.12
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼